• facebook
  • pinterest
  • twitter
  • rss
  • mail
  • Directory
  • Intranet
  • Webmail
  • Contacts
  • Access
  • Switch Language
    • frFrançais (French)
    • enEnglish
INSTITUT DE PHYSIQUE ET DE CHIMIE DES MATERIAUX DE STRASBOURG
  • Laboratory
    • Introduction
    • Organigram
    • General Services
    • Quality policy
    • Publications
    • Valorisation
    • News
    • Events
    • Some figures
    • Addept
    • IPCMS’ 30th Anniversary
  • Departments
    • Inorganic Materials Chemistry (DCMI)
    • Organic Materials (DMO)
    • Magnetic Objects on the NanoScale (DMONS)
    • Ultrafast Optics and Nanophotonics (DON)
    • Surfaces and Interfaces (DSI)
  • Teaching
    • Formations
    • Ecole-Doctorale
    • Master Condensed Matter and Nanophysics
    • Master Materials and Nanosciences (MNS)
    • Master of Science of Imaging, Robotics and Biomedical Engineering (IRIV)
    • Masters ” Chemistry”
    • International Graduate School QMat
  • EXCELLENCE Programs
    • Union
    • UTEM
    • NIE
  • Partnerships
    • CARMEN
    • Carnot Mica Institut
    • Start’Up SuperBranche
    • Material and Nanoscience Federation of Alsace
    • International Center for Frontier Research in Chemistry
    • International Relationship
      • LIA LaFICS
      • French-German Graduate School
      • Rhin Solar
  • Facilities
    • Nanofab
    • Electron Microscopy
    • X-ray diffraction platform
    • Optical Characterization
    • Scientific computing
Navigation
IPCMS Diffusion, Nucleation & Growth

Diffusion, Nucleation & Growth

DIFFUSION, NUCLEATION AND GROWTH

A second important part of the work of the DSI’s computational team focuses on the growth mechanims of supported nanostructures. Atomic diffusion, nucleation processes and cluster morphol- ogy are the main issues carefully examined by the DSI’s compuational team. Concerning the atomic diffusion, emphasis is given on the links between the substrate nanostructuration and the adsorbate diffusion mechanisms. Recon- structed surfaces[5, 6, 7] as well as vicinal ones[8, 9] are considered. Some less common atomic diffusion mechanisms, such as the strain-induced soliton diffusion[10], the low-temperature quantum diffusion[11, 12], and the cluster diffusion[13, 14], are also studied. In addition, due to the heteroatomic feature of the supported nanostrucure growth, intermixing mechanisms, such as exchange processes[15, 16] and deeper bulk heterodiffusion mechanisms[17, 18], are also investigated. The nanostructure morphology studies concerns the characterization of the shape of the supported nanostructure. Parameters such as temperature and cluster size are considered[19, 20].

References :

[4] ”Local strain analysis of the herringbone reconstruction of Au(111) through atomistic simulations”, H. Bulou and C. Goyhenex, Phys. Rev. B 65, 045407 (2002).

[5] ”Dynamical behavior of Co adatoms on the herringbone reconstructed surface of Au(111)”, H. Bulou, C. Massobrio, Superlattices and Microstruc- tures 36, 305 (2004).

[6] ”New Atomic Mechanism of Preferential Nucleation on the Herringbone Reconstruction of Au(111)”, H. Bulou and C. Massobrio, J. Phys. Chem. C 112, 8743 (2008).

[7] ”Atomic diffusion on nanostructured surfaces”, H. Bulou, Superlattices and Microstructures 44, 533 (2008).

[8] ”nanodots on Au(788) : a comparison between VT-STM experiments and multi-scaled calculations”, S. Rohart, G. Baudot, V. Repain, Y. Girard, S. Rousset, H. Bulou, C. Goyhenex, L. Proville, Surf. Sci. 559, 47 (2004).

[9] ”Lattice mismatch effect in atomic migration along steps during heteroepi- taxial metal growth”, C. Goyhenex, K. Farah, A. Taobane, Surf. Sci. 601, L132 (2007).

[10] ”Long range substrate mediated mass transport on metal surfaces induced by adatom clusters”, H. Bulou and J.-P. Bucher, Phys. Rev. Lett. 96, 076102 (2006).

[11] ”Surface diffusion of Cr adatoms on Au(111) by quantum tunneling”, P. Ohresser, H. Bulou, S. S. Dhesi, C. Boeglin, B. Lazarovits, E. Gaudry, I. Chado, J. Faerber, and F. Scheurer, Phys. Rev. Lett. 95, 195901 (2005).

[12] ”Low-Temperature Surface Diffusion on Metallic Surfaces”, H. Bulou, F. Scheurer, C. Boeglin, P. Ohresser, S. Stanescu, and E. Gaudry, J. Phys. Chem. C 113, 4461 (2009).

[13] ”Adatom and dimer migration in heteroepitaxy : Co/Pt(111)”, C. Goy- henex, Surf. Sci. 600, 15 (2006).

[14] ”Self-controlled growth and two-dimensional ordering of metallic nanopar ticles”, B. Vigolo, R. Mafouana, C. Goyhenex, J. Faerber, J. Arabski, C. Hirlimann, and J.-L. Rehspringer, Appl. phys. Lett. 88, 153122 (2006).

[15] ”Mechanisms of exchange diffusion on fcc(111) transition metal surfaces”,H. Bulou and C. Massobrio, Phys. Rev. B 72, 205427 (2006).

[16] ”Diffusion piloted ordering in codeposited CoPt epitaxial layers : Experi- ment and quenched molecular dynamics simulations”, O. Ersen, C. Goy- henex, and V. Pierron-Bohnes, Phys. Rev. B 78, 035429 (2008).

[17] ”Preparation of anisotropic magnetic FeNiPt2 films on MgO(001) : Atom- istic mechanisms for the interdiffusion of two L1(0) phases”, R. V. P. Montsouka, C. Goyhenex, G. Schmerber, C. Ulhaq-Bouillet, A. Derory, J. Faerber, J. Arabski, and V. Pierron-Bohnes, Phys. Rev. B 74, 144409 (2006).

[18] ”Atomic ordering in nano-layered FePt”, M. Koz lowski, R. Kozubski, Ch. Goyhenex, V. Pierron-Bohnes, M. Rennhofer, S. Malinov, Intermetallics 17, 907 (2009).

[19] ”Cluster critical size effect during growth on a heterogeneous surface”, I. Chado, C. Goyhenex, H. Bulou, and J. P. Bucher, Phys. Rev. B 69, 085413.

[20] ”Evolution of the morphology of small Co clusters grown on Au(111)”, I. Chado, C. Goyhenex, H. Bulou, J. P. Bucher, Appl. Surf. Sci. 226, 178 (2004).

Institut de Physique et de Chimie des Matériaux de Strasbourg

  • /Crédits
  • /Mentions légales
  • /Login
Optimization WordPress Plugins & Solutions by W3 EDGE