• facebook
  • pinterest
  • twitter
  • rss
  • mail
  • Directory
  • Intranet
  • Webmail
  • Contacts
  • Access
  • Switch Language
    • frFrançais (French)
    • enEnglish
INSTITUT DE PHYSIQUE ET DE CHIMIE DES MATERIAUX DE STRASBOURG
  • Laboratory
    • Introduction
    • Organigram
    • General Services
    • Quality policy
    • Publications
    • Valorisation
    • News
    • Events
    • Some figures
    • Addept
    • IPCMS’ 30th Anniversary
  • Departments
    • Inorganic Materials Chemistry (DCMI)
    • Organic Materials (DMO)
    • Magnetic Objects on the NanoScale (DMONS)
    • Ultrafast Optics and Nanophotonics (DON)
    • Surfaces and Interfaces (DSI)
  • Teaching
    • Formations
    • Ecole-Doctorale
    • Master Condensed Matter and Nanophysics
    • Master Materials and Nanosciences (MNS)
    • Master of Science of Imaging, Robotics and Biomedical Engineering (IRIV)
    • Masters ” Chemistry”
    • International Graduate School QMat
  • EXCELLENCE Programs
    • Union
    • UTEM
    • NIE
  • Partnerships
    • Carnot Mica Institut
    • Nanotransmed
    • Start’Up SuperBranche
    • FRMNGE
    • Material and Nanoscience Federation of Alscace
    • International Center for Frontier Research in Chemistry
    • International Relationship
      • LIA Franco-Corean
      • French-German Graduate School
      • Nanomatrix
      • Rhin Solar
  • Facilities
    • Nanofab
    • Electron Microscopy
    • X-ray diffraction platform
    • Optical Characterization
    • Scientific computing
Navigation
Magnetic Objects on the NanoScale (DMONS) Research Teams of DMONS Spintronic: basics Current-Induced Spin-Wave Doppler Shift

Current-Induced Spin-Wave Doppler Shift

Décalage Doppler d’onde de spin induit par un courant électrique2

Science, 322, 410 (2008)
Vincent Vlaminck and Matthieu Bailleul

 

Spin transfer appears to be a promising tool for improving spintronics devices. Experiments that quantitatively access the magnitude of the spin transfer are required for a fundamental understanding of this phenomenon. By inductively measuring spin waves propagating along a permalloy strip subjected to a large electrical current, we observed a current-induced spin wave Doppler shift that we relate to the adiabatic spin transfer torque. Because spin waves provide a well-defined system for performing spin transfer, we anticipate that they could be used as an accurate probe of spin-polarized transport in various itinerant ferromagnets.

Decalage Doppler onde de spin induit par courant electrique - image 2

Principle of the spin wave measurements. (A) Sketch of a spin wave subjected to spin transfer torque (case of a spin wave propagating against the dc current – along the electron flow- with a spin polarization P > 0). The red arrows represent the flow of spin-polarized electrons (the spin current Q). (B) Optical micrograph of the device with a w = 2µm permalloy strip (t = 20 nm) and a pair of \lambda = 0.8 µm antennae. ( C) Scanning electron micrograph of the central region. (D) Fourier transform of the microwave current density for the antenna shown in ( C). It was calculated by assuming a uniform current density across each branch of the meander. (E) Sketch of the operating principle of propagating spin wave spectroscopy.

Decalage Doppler onde de spin induit par courant electrique - image 3

Influence of a dc current on the spin wave propagation. (A) Mutual inductance measurement in the presence of a I =+6mA dc current for the w=2µm, \lambda= 0.8 µm sample under \mu_0H_0 = 1.029 T. \Delta L_{21} is shown as a red curve and corresponds to spin waves propagating from antenna 1 to antenna 2. \Delta L_{12} is shown as a blue curve and corresponds to spin waves propagating from antenna 2 to antenna 1. The orientations of the spin wave wave vector and of the electron flow are shown in the inset. The measured frequency shift \Delta f is indicated on the graph. For clarity, only the imaginary part and only the frequency range corresponding to the main peak (k \approx k_M) are shown. (B) Idem for I = –6 mA.

References:

V. VLAMINCK, M. BAILLEUL ,
Spin-wave transduction at the submicrometer scale : experiment and modelling,
Phys. Rev. B 81, 014425/1-13 (2010).

M. BAILLEUL, M. BAILLEUL,
Décalage Doppler des ondes de spin induit par un courant électrique,
Images de la Physique 2009 (French vulgarisation paper)

V. VLAMINCK, M. BAILLEUL,
Current-induced spin-wave Doppler shift ,
Science 322, 410-413 (2008).

V. VLAMINCK,
Décalage Doppler des ondes de spin induit par un courant électrique,
Thèse de doctorat de l’université Louis Pasteur (2008)

Institut de Physique et de Chimie des Matériaux de Strasbourg

  • /Crédits
  • /Mentions légales
  • /Login
Optimization WordPress Plugins & Solutions by W3 EDGE