• facebook
  • pinterest
  • twitter
  • rss
  • mail
  • Directory
  • Intranet
  • Webmail
  • Contacts
  • Access
  • Switch Language
    • frFrançais (French)
    • enEnglish
INSTITUT DE PHYSIQUE ET DE CHIMIE DES MATERIAUX DE STRASBOURG
  • Laboratory
    • Introduction
    • Organigram
    • General Services
    • Quality policy
    • Publications
    • Valorisation
    • News
    • Events
    • Some figures
    • Addept
    • IPCMS’ 30th Anniversary
  • Departments
    • Inorganic Materials Chemistry (DCMI)
    • Organic Materials (DMO)
    • Magnetic Objects on the NanoScale (DMONS)
    • Ultrafast Optics and Nanophotonics (DON)
    • Surfaces and Interfaces (DSI)
  • Teaching
    • Formations
    • Ecole-Doctorale
    • Master Condensed Matter and Nanophysics
    • Master Materials and Nanosciences (MNS)
    • Master of Science of Imaging, Robotics and Biomedical Engineering (IRIV)
    • Masters ” Chemistry”
    • International Graduate School QMat
  • EXCELLENCE Programs
    • Union
    • UTEM
    • NIE
  • Partnerships
    • CARMEN
    • Carnot Mica Institut
    • Start’Up SuperBranche
    • Material and Nanoscience Federation of Alsace
    • International Center for Frontier Research in Chemistry
    • International Relationship
      • LIA LaFICS
      • French-German Graduate School
      • Rhin Solar
  • Facilities
    • Nanofab
    • Electron Microscopy
    • X-ray diffraction platform
    • Optical Characterization
    • Scientific computing
Navigation
Surfaces and Interfaces (DSI) Research Teams Modelling C60.xyz Surface & Adsorbate Nanostructuration

Surface & Adsorbate Nanostructuration

Most of the substrates used by the DSI’s experimental research teams consists of nanostructured substrates, i. e. reconstructured surfaces or vicinal ones. In this framework, DSI’s computational team studies the links between the nanostructuration and the stress at the surface or induced in the adsorbate layers by the heteroepitaxial process[1, 2, 3, 4]. Emphasis is given on determining the conditions controling the quality and the periodicity of the nanostructuration, in order to fully organize the supported nanostructures.

References :

[1] ”Pt/Co(0001) superstructures in the submonolayer range : A tight-binding quenched-molecular-dynamics study”, C. Goyhenex, H. Bulou, J.-P. Deville, and G. Tréglia, Phys. Rev. B 60, 2781 (1999).

[2] ”Theoretical determination of two critical sizes for strain relaxation during Co/Pt(111) heteroepitaxy”, C. Goyhenex and G. Tréglia, Surf. Sci. 446, 272 (2000).

[3] ”Compressive strain versus tensile strain – A theoretical study of Pt/Co(0001) and Co/Pt(111) heteroepitaxy”, C. Goyhenex, H. Bulou, J.-P. Deville, and G. Tréglia, Appl. Surf. Sci. 177, 238 (2001).

[4]  “Local strain analysis of the herringbone reconstruction of Au(111) through atomistic simulations”, H. Bulou and C. Goyhenex, Phys. Rev. B 65, 045407 (2002).

Institut de Physique et de Chimie des Matériaux de Strasbourg

  • /Crédits
  • /Mentions légales
  • /Login
Optimization WordPress Plugins & Solutions by W3 EDGE