

MASTER II Matière Condensée et Nanophysique

Spectroscopies locales pour les nanosciences

Jean-Pierre Bucher

Développements récents

Molecules d'octacosane autoassemblées sur le graphite

Corail quantique obtenu par manipulation atomique

Agrégat fractal d'Ag sur Pt(111) obtenu par croissance sous ultravide à 110 K

Self-organized Co clusters on Au(111)

Zigzag reconstruction of Au(111)

STM image 100 nm x 100 nm

Bistability in atomic scale antiferromagnet

S. Loth et al., Science 335, 198 (2012)

1	INTRODUCTION	7.	VIDE ET UHV
•		7.1	Aspects expérimentaux
2.	THERMODYNAMIQUE DES SURFACES	7.2	Systèmes de pompage
2.1	Forces capillaires, Equation de Laplace	7.3	Jauges à vide
2.2	Fonction thermodynamiques de surface, notion de modele		°
2.3	Iension de vapeur d'une surface courbe: Formule de Kelvin	8.	DIFFRACTION ELECTRONIQUE (LEED. RHEED)
2.4	Isotherme d'adsorption de Gibbs	8.1	Méthodes expérimentales
2.5	Forme d'équilibre d'un cristal	8.2	Conditions d'interférence et construction d'Ewald
		8.3	Analyse de figures de diffraction simples
3.	CRISTALLOGRAPHIE DES SURFACES	8.4	Théorie cinématique
3.1	Introduction	8.5	Courbes intensité/tension
3.2	Réseau de Bravais, groupes ponctuels et groupes spatiaux	0.0	
3.3	Relaxation et reconstruction	9	SPECTROSCOPIES ELECTRONIQUES
3.3.1	Relation entre la maille de la structure reconstruite et du substrat	9.1	Interaction des RX avec la matière
3.3	Réseau réciproque	9.2	Spectrosconie de photoélectrons émis par les RX (XPS)
		9.3	Spectroscopie de photoélectrons émis par les UV (UPS)
4	PROPRIETES ELECTRONIQUES DES SURFACES	9.4	Spectroscopie Auger (AES)
4.1	Emission électronique	0.1	
4.1.1	Thermoémission	10	
4.1.2	Emission Schottky	10 1	Principes de base des MCP
4.1.3	Emission par effet de champ et effet tunnel	10.1	Détection de courant détection de force
4.2	Phénomène de contact	10.1.1	Les différents modes d'asservissement
4.3	Densité électronique à la surface d'un métal	10.1.2	Nanonositionnement et balavage
4.3.1	Le modèle du jellium	10.1.5	Le microscope à effet tunnel (STM)
4.3.2	Le modèle des liaisons fortes	10.2	Ee microscope a ener turner (STW) Eendomonte physiques (Hamiltonion de transfort)
5.	EXCITATIONS COLLECTIVES A LA SURFACE	10.2.1	Information spoetroscopique, travail de sortio
5.1	Excitons et plasmons	10.2.2	Internation specificscopique, il avail de solitie
5.2	Phonons de surface	10.2.5	Confinement quentique
5.3	Etude de quelques systèmes	10.2	
		10.3	
6.	ADSORPTION, DIFFUSION SUPERFICIELLE ET CROISSANCE	10.3.1	Porces en jeu, ordres de grandeurs
6.1	Phénomènes d'adsorption (approche statistique)	10.3.2	Pointes et leviers
6.2	Mouillage, adhésion, angle de contact	10.3.3	Detection et mode de fonctionnement (contact, vibrant)
6.3	Principaux modes de croissance		
5.4	Barrières de diffusion, analyse de densités d' îlots	11.	ETUDE DE QUELQUES SYSTEMES TYPE
6.5	Epitaxie moléculaire		Le cours sera lliustre par de nombreux exemples de la litterature.
6.6	Physisorption et chimisorption		lires a part d'articles.
6.6.1	Approche microscopique		
6.6.2	Tendances expérimentales		
6.6.3	Modèle analytique en couplage faible ou intermédiaire		

Epaisseurs typiques

Adsorption, ségrégation, oxydation		0.2 -	2.0 nm
Films d'oxyde naturel sur un métal	ou semicond	2.0 -	10 nm
Epaisseur d'une barrière Schottky		200 -	500 nm
Dopage des surfaces de semiconducteurs		500 -	6000 nm
(bombardement ionique)			
Surface déterminante pour la friction qque		μm	

Jonction p-n charges d'espace Surface d'un alliage Cu_xNi_{1-x}

THERMODYNAMIQUE DES SURFACES

Equilibre mécanique d'une surface courbe

Exemple: Pour une goutte de mercure (Hg) avec r = 0.1 mm, γ = 0.5 N/m : Δp = 100 mbar

L'équation de Laplace reste valable que la température soit uniforme ou non. L'équilibre chimique n'est pas nécessaire à sa dérivation.

Tension de vapeur d'une surface courbe

Equ. chimique

 $\mu_L = \mu_V$

Equ. mécanique (Laplace)

$$p_L - p_V = \frac{2\gamma}{r}$$

$$dp_L - dp_V = d\left(\frac{2\gamma}{r}\right) \qquad d\mu_L = d\mu_V$$

Gibbs – Duhem:

 $s_L dT - v_L dp_L + d\mu_L = 0$ $s_V dT - v_V dp_V + d\mu_V = 0$

Phase liquide Phase vapeur

Formule de Kelvin

Intégration:
$$\left(\frac{1}{r} = 0, p_{V} = p_{V}^{0}\right) \rightarrow \left(\frac{1}{r}, p_{V}\right)$$

$$\ln \frac{p_{V}}{p_{V}^{0}} = \frac{v_{L}}{RT} \cdot \frac{2\gamma}{r}$$
Goutte d' eau à 300K
 $\gamma = 72.7510^{-3} J/m^{2}$
Dans un brouillard, les grandes gouttelettes
grossissent au dépend des petites
Il s' établit un gradient de concentration entre
deux particules:
 $C_{i} = C_{\infty} e^{\frac{2v\gamma}{r_{i}kT}}$

$$\left| \begin{array}{c} 1 \\ \frac{1}{r}, p_{V} \\ \frac{p_{V}}{p_{V}^{0}} \\ \frac{1}{r}, p_{V} \\ \frac{p_{V}}{p_{V}^{0}} \\ \frac{p_{V}}{p_{V}$$

Murissement d'Ostwald

Illustration: Nanomoteur électrique

Deux gouttelettes de tailles différentes sont déposées sur un nanotube de carbone. En appliquant une tension, les atomes diffusent le long du nanotube, de la grosse goutte vers la petite dont le rayon augmente plus rapidement que celui de la grosse diminue.

Lorsque les gouttes entrent en contact, la pression interne plus grande de la petite goutte va rapidement chasser les atomes dans la grosse goutte par la zone de contact. Le système se retrouve dans l'état initial. La tension appliquée permet de varier la fréquence de cet oscillateur.

Fonction thermodynamiques de surface

Le modèle: Gibbs a introduit la notion de surface séparatrice entre deux phases, les deux phases étant homogènes jusqu'au plan de séparation. Dans cette approche, les quantités d'interface spécifiques sont des quantités d'excès.

Il n'y a **pas de volume d'interface**, le point essentiel étant **l'introduction** de la **tension d'interface**, γ en tant que nouvelle variable **intensive**.

Gibbs donne le changement réversible de l'énergie d'excès U^s de la phase d'interface

$$dU^{S} = TdS^{S} + \gamma dA + \sum_{i=1}^{c} \mu_{i} dN_{i}^{S}$$

Il n' y a pas de terme volumique !

 C_i^{α} Concentration du constituant i [mole/m³] au coeur de la phase α N_i^{α} Nombre de moles du constituant i dans la phase α

$$N_i^{\alpha} = c_i^{\alpha} V^{\alpha} \qquad \qquad N_i^{\beta} = c_i^{\beta} V^{\beta}$$

En général, $N_i \neq N_i^{\alpha} + N_i^{\beta}$

Pour décrire le système réel, il faut attribuer à la surface de division un contenu massique

$$N_i = N_i^{\alpha} + N_i^{\beta} + N_i^S; \quad N_i^S \le 0 \text{ ou } \ge 0$$

 Γ_i est **l' excès** du nombre de moles du constituant i à la surface appelé par Gibbs **l' adsorption** du constituant i. Γ_i est positif, négatif ou nul.

 Γ_i est proportionnel à la différence des deux aires (ABC) et (CDE) et dépend de la surface de division. On peut toujours choisir sa position de sorte que pour un des constituants i=1, le solvant d'une solution ou le constituant principal d'un alliage, $\Gamma_1 = 0$. Dans ce cas (ABC) = (CDE). C'est le choix que nous adopterons dans la suite.

En notant que i varie de 2 à c et $V^{S}=0$, la forme entière de Gibbs pour U^{S} s'écrit:

$$U^{S} = TS^{S} + \gamma A + \sum_{i=2}^{c} \mu_{i} N_{i}^{S}$$

Les propriétés extensives sont proportionnelles à A (même procédure qu'auparavant):

$$H^{s} = TS^{s} + \sum_{i=2}^{c} \mu_{i} N_{i}^{s}$$
$$F^{s} = \gamma A + \sum_{i=2}^{c} \mu_{i} N_{i}^{s}$$
$$G^{s} = \sum_{i=2}^{c} \mu_{i} N_{i}^{s}$$

On en déduit immédiatement les équations pour un système a 1 constituant.

Par comparaison avec le cas simple et en remplaçant -Vdp par Ad γ on obtient pour dG^s $\,$:

$$dG^{S} = -S^{S}dT - Ad\gamma + \sum_{i=2}^{c} \mu_{i}dN_{i}^{S}$$

ou:

$$dG^{S} = \sum_{i=1}^{c} N_{i}^{S} d\mu_{i} + \sum_{i=2}^{c} \mu_{i} dN_{i}^{S}$$

Ce qui conduit à la formule d'adsorption de Gibbs

$$d\gamma = -s^{s}dT - \sum_{i=2}^{c}\Gamma_{i}d\mu_{i} \qquad s^{s} = \frac{S^{s}}{A}; \quad \Gamma_{i} = \frac{N_{i}^{s}}{A}$$

C'est l'équivalent bi-dimensionnel de l'équation de Gibbs-Duhem tridimensionnelle. Elle prédit que $\gamma \downarrow$ quand $\mu_i \uparrow$ pour $\Gamma_i > 0$.

Pour T=const on obtient l'isotherme d'adsorption de Gibbs:

$$d\gamma = -\sum_{i=2}^{c} \Gamma_{i} d\mu_{i} \qquad \Gamma_{i} = -\left(\frac{\partial\gamma}{\partial\mu_{i}}\right)_{T,\mu_{j\neq i}}$$

On peut montrer que ces relations sont invariantes par rapport à la surface de division

Implication de l'isotherme d'adsorption de Gibbs

$$d\gamma = -\sum_{i=1}^{c} \Gamma_i d\mu_i$$

donne le changement de γ en fonction des excès superficiels Γ_i et des changements d μ_i des potentiels chimiques. L'isotherme d'adsorption de Gibbs décrit non seulement **l'adsorption** mais également la **ségrégation**

ADSORPTION

Echange de molécules entre la surface du solide et le gaz

SEGREGATION

Echange d'atomes entre le volume et la surface

L'équilibre est atteint lorsque:

 $\mu_i^{gaz} = \mu_i^{ads} \qquad \qquad \mu_i^{vol} = \mu_i^{ads}$

Pour un gaz idéal(*) en équilibre avec un solide ou un liquide ou une solution idéale(*) liquide ou solide: $\mu_i = \mu_i(p_i)$ et $\mu_i = \mu_i(c_i)$ Pour calculer $\Gamma_i = -\left(\frac{\partial \gamma}{\partial \mu_i}\right)_{T,\mu_{j\neq i}}$ il faut de plus connaître $\gamma = \gamma(c_i)$ car $\Gamma_i = -\left(\frac{\partial \gamma}{\partial c_i}\right)\frac{\partial c_i}{\partial \mu_i}$

(*) pas de chaleur de mélange

Soit
$$\mu_i = \mu_i^0 + RT \ln c_i$$

 μ_i^0 est le potentiel chimique pour une concentration de 1

$$\Rightarrow \Gamma_i = -\frac{c_i}{RT} \left(\frac{\partial \gamma}{\partial c_i}\right)_{T,c_{j\neq i}}$$
 Si pour le constituant 1, $\Gamma_1 = 0$, on a:

$$\Gamma_2 = -\frac{c_2}{RT} \left(\frac{\partial \gamma}{\partial c_2}\right)_T$$

Pour le cas de l'adsorption on obtient:

$$\Gamma_2 = -\frac{p_2}{RT} \left(\frac{\partial \gamma}{\partial p_2}\right)_T$$

- Si le constituant 2 diminue γ, ce constituant sera **enrichi** à la surface (accumulation)
- Si le constituant 2 augmente γ, ce constituant sera appauvri à la surface

Equilibrium shape of crystals

- SEM image of an equilibrated Pb crystallite, [J.C. Heyraud, J.J. Métois, Surf. Sci. 128 (1983) 334.].
- (b) STM image of Pb crystallite on Ru(001), average (111) facet radius 140 nm [C. Bombis, A. Emundts, M. Nowicki, H.P. Bonzel, Surf. Sci. 511 (2002) 83–96].
- (c) STM image of a 3D Pb crystallite showing (111) facet at the top (average facet radius 230 nm) and step resolved vicinal surface.
- (d) Schematic of a 3D crystallite supported by a substrate. Definitions of contact angle, surface and interface free energies.

From H.P. Bonzel, Physics Reports **385** (2003) 1–67.

Forme d'équilibre des cristaux

On minimise l'énergie libre de Helmholtz du système à T=const et V=const

dF = 0

Vue en coupe

Soit γ_n la tension superficielle de la face d'aire A_n du polyhèdre. La condition d'équilibre s'écrit:

$$dF = -p_V dV_V - p_S dV_S + \sum_n \gamma_n dA_n = 0$$

En remarquant que $V = V_V + V_S = const$ ou $dV_V = -dV_S$ L'équ s'écrit:

$$-(p_S - p_V)dV_S + \sum_n \gamma_n dA_n = 0$$

Le volume du cristal peut être considéré comme la somme des volumes des pyramides construites sur les faces du cristal :

$$V_S = \frac{1}{3} \sum_n h_n A_n$$

Alors
$$dV_S = \frac{1}{3} \sum_n (A_n dh_n + h_n dA_n)$$

où les h_n sont les hauteurs des pyramides.

Par ailleurs, chaque changement de volume correspond à un décalage de A_n de dh_n . Au premier ordre:

$$dV_S = \sum_n A_n dh_n$$

En combinant les deux dernières Equs, on otient : $dV_s = \frac{1}{2} \sum h_n dA_n$

En substituant dans l'équ d'équilibre :

$$\sum_{n} \left[\gamma_n - \frac{1}{2} (p_s - p_v) h_n \right] dA_n = 0$$

Comme les dA_n sont indépendants les uns des autres chaque terme dans les […] est nul, et:

$$\underbrace{p_s - p_v}_{N} = 2\frac{\gamma_n}{h_n}$$

La différence ne dépend pas de l'orientation cristallographique. A l'équilibre on obtient:

$$\frac{\gamma_n}{h_n} = const$$

Un cristal satisfaisant cette relation quel que soit n est appelé cristal de Curie-Wulff. Lorsque les $\gamma(111)$, $\gamma(100)$ sont connus, la forme d'équilibre peut être obtenue.

$$\gamma_1 : \gamma_2 : \gamma_3 \dots = h_1 : h_2 : h_3 \dots$$

γ-plot

On procède de la manière suivante:

On dessine à partir d'un point "0" les normales aux faces cristallines; on reporte sur les normales une grandeur proportionnelle au γ de la face considérée.

La forme de Curie-Wulff correspond seulement à la forme d'équilibre si l'on peut <u>annuler le terme</u> <u>d'adsorption</u>. Cela n'est possible que pour une espèce chimique. En pratique, le cristal peut être contaminé ! De la même manière on peut déterminer la forme d'équilibre pour <u>un cristal en contact avec un</u> substrat d'énergie de surface γ_s .

Une énergie $\gamma_s A_m$ est perdue et une énergie $\gamma_i A_m$ doit être dépensée

 $\gamma_i ~~est$ l'énergie d'interface A_m est l'air de contact

Alors la condition d'équilibre s'écrit:

$$dF = -p_V dV_V - p_S dV_S + \sum_{n \neq m} \gamma_n dA_n + (\gamma_i - \gamma_s) dA_m = 0$$

Avec la formule de Dupré:

 $\gamma_i = \gamma_s + \gamma_m - \beta$ β est l'énergie d'adhésion.

En suivant la même procédure qu'auparavant :

$$\frac{\gamma_n}{h_n} = \frac{\gamma_m - \beta}{h_m} = const$$

Ou :

$$\gamma_1 : \gamma_2 : \gamma_3 \dots (\gamma_m - \beta) = h_1 : h_2 : h_3 \dots h_m$$

Donc la distance h_m de "0" au plan de contact est proportionnelle à la différence de l'énergie de surface correspondante et de l'énergie d'adhésion. Lorsque $\beta=0$, h_m prendra sa valeur "homogène" en l'absence de substrat \rightarrow absence complète de mouillage.

Nanometer clusters formed in a beam

Clusters pre-formed in the gas phase using a laser vaporisation source and deposited on an amorphous carbon coated grid in UHV.

HRTEM-images along a [110] direction of isolated cobalt and iron cluster.

9.7 nm

(110) facets