• facebook
  • pinterest
  • twitter
  • rss
  • mail
  • Annuaire
  • Intranet
  • Webmail
  • Cloud
  • Contacts
  • Accès
  • Switch Language
    • frFrançais
    • enEnglish (Anglais)
INSTITUT DE PHYSIQUE ET DE CHIMIE DES MATERIAUX DE STRASBOURG
  • Laboratoire
    • Présentation
    • Organigramme
    • Services généraux
    • Notre politique qualité
    • Publications
    • Valorisation
    • Actualités
    • Evénements
    • Séminaires IPCMS
    • IPCMS en chiffres
    • ADDEPT
    • Actions grand public
    • 30 ans de l’IPCMS
  • Départements
    • Chimie des Matériaux Inorganiques (DCMI)
    • Matériaux Organiques (DMO)
    • Magnétisme des Objets NanoStructurés (DMONS)
    • Optique ultra-rapide et Nanophotonique (DON)
    • Surfaces et Interfaces (DSI)
  • Enseignement
    • Formations UNISTRA
    • Ecoles Doctorales
    • Master Matière Condensée et Nanophysique
    • Master Matériaux et Nanosciences (MNS)
    • Master Imagerie, Robotique, Ingénierie pour le Vivant (IRIV)
    • Masters Chimie
    • Ecole Universitaire de Recherche QMat
  • Equipex/Labex
    • UNION
    • UTEM
    • NIE
    • Inauguration des EquipEx
  • Partenariats
    • CARMEN – Laboratoire commun
    • Institut Carnot MICA
    • Start’Up SuperBranche
    • Fédération Matériaux et Nanosciences Alsace
    • Fondation pour la Recherche en Chimie
    • A l’International
      • LIA LaFICS
      • Collège doctoral franco-allemand
      • Rhin Solar
  • Plateformes
    • Nanofabrication
    • Microscopie Electronique
    • Plateforme de diffraction des rayons X
    • Caractérisation Optique
    • Calcul Scientifique
Navigation
Magnétisme des Objets NanoStructurés (DMONS) Equipes de Recherches du DMONS Spintronique fondamentale TetraMAG

TetraMAG

TetraMAG – Our micromagnetic code Our simulations are performed with TetraMAG, a powerful general-purpose micromagnetic finite-element code originally developed by R. Hertel. The code is based on a hybrid Finite Element / Boundary Element formulation which allows for the accurate modeling of arbitrarily shaped magnets. Over the past years, A. Kakay has programmed drastic improvements of the performance of thes code and has fully parallelized it. Recently the code was ported to to the CUDA system,for programmable, General Purpose Graphical Processing Units (GPGPUs ). By efficiently exploiting the massively parallel architecture of the GPGPUs, the code performs with amazing calculation speed. Expensive large-scale supercomputing centers become effectively superfluous with this progress. An enormous amount of energy is moreover saved by using a single GPGPU instead of hundreds of CPUs. The dream of Personal High-Performance Computing is already a reality with our GPU-based micromagnetic finite-element code !

Institut de Physique et de Chimie des Matériaux de Strasbourg

  • /Crédits
  • /Mentions légales
  • /Se connecter
Optimization WordPress Plugins & Solutions by W3 EDGE