• facebook
  • pinterest
  • twitter
  • rss
  • mail
  • Annuaire
  • Intranet
  • Webmail
  • Cloud
  • Contacts
  • Accès
  • Switch Language
    • frFrançais
    • enEnglish (Anglais)
INSTITUT DE PHYSIQUE ET DE CHIMIE DES MATERIAUX DE STRASBOURG
  • Laboratoire
    • Présentation
    • Organigramme
    • Services généraux
    • Notre politique qualité
    • Publications
    • Valorisation
    • Actualités
    • Evénements
    • Séminaires IPCMS
    • IPCMS en chiffres
    • ADDEPT
    • Actions grand public
    • 30 ans de l’IPCMS
  • Départements
    • Chimie des Matériaux Inorganiques (DCMI)
    • Matériaux Organiques (DMO)
    • Magnétisme des Objets NanoStructurés (DMONS)
    • Optique ultra-rapide et Nanophotonique (DON)
    • Surfaces et Interfaces (DSI)
  • Enseignement
    • Formations UNISTRA
    • Ecoles Doctorales
    • Master Matière Condensée et Nanophysique
    • Master Matériaux et Nanosciences (MNS)
    • Master Imagerie, Robotique, Ingénierie pour le Vivant (IRIV)
    • Masters Chimie
    • Ecole Universitaire de Recherche QMat
  • Equipex/Labex
    • UNION
    • UTEM
    • NIE
    • Inauguration des EquipEx
  • Partenariats
    • CARMEN – Laboratoire commun
    • Institut Carnot MICA
    • Start’Up SuperBranche
    • Fédération Matériaux et Nanosciences Alsace
    • Fondation pour la Recherche en Chimie
    • A l’International
      • LIA LaFICS
      • Collège doctoral franco-allemand
      • Rhin Solar
  • Plateformes
    • Nanofabrication
    • Microscopie Electronique
    • Plateforme de diffraction des rayons X
    • Caractérisation Optique
    • Calcul Scientifique
Navigation
Magnétisme des Objets NanoStructurés (DMONS) Equipes de Recherches du DMONS Spintronique fondamentale Modification de parois de domaines induites par le courant dans des nanopiliers

Modification de parois de domaines induites par le courant dans des nanopiliers

arton1936Current induced domain wall states in CPP nanopillars with perpendicular anisotropy D. Ravelosona (IEF, Orsay), S. Mangin (LPM, Nancy), Y. Henry, Y. Lemaho, J. A. Katine, B. D. Terris, and Eric E. Fullerton (Hitachi GST, San Jose) JOURNAL OF PHYSICS D-APPLIED PHYSICS 40, 253 (2007)

Current induced domain wall creation in CPP-GMR nanopillars made of Co/Ni films with strong perpendicular magnetic anisotropy is described. We find that stable domain wall states (DWS) can be nucleated with modest current densities of ∼ 107 A.cm−2 and further controlled by current to restore the two uniform states. The reproducibility of both the creation and annihilation of such DWS is studied. Experiments have been performed several times for a given nanopillar, but also for different devices. The influence of temperature, size and shape of the devices, as well as the distribution of magnetic properties on magnetization reversal is discussed.

   

Fig. 1 : Differential resistance as a function of current for a 100 nm × 200 nm pillar. The effective magnetic field acting on the magnetization of the free layer is almost nil. The initial state is the antiparallel (AP) state. The current sweeps from the AP to the intermediate state (IS) and then back to the AP state. The transition from the IS to parallel (P) state is also shown. The inset corresponds to micromagnetic simulations (perpendicular component of the magnetization. The dots are a schematic illustration of the pinning sites.

Fig. 1 : Differential resistance as a function of current for a 100 nm × 200 nm pillar. The effective magnetic field acting on the magnetization of the free layer is almost nil. The initial state is the antiparallel (AP) state. The current sweeps from the AP to the intermediate state (IS) and then back to the AP state. The transition from the IS to parallel (P) state is also shown. The inset corresponds to micromagnetic simulations (perpendicular component of the magnetization. The dots are a schematic illustration of the pinning sites.


Fig. 2 : Distribution of critical current for the (a) AP → IS transition and (b) IS → P transition, for the device of figure 1, as obtained from 200 measurements.

Fig. 2 : Distribution of critical current for the (a) AP → IS transition and (b) IS → P transition, for the device of figure 1, as obtained from 200 measurements.

Fig. 3 : Resistance versus DC current loops for 4 different nanodevices : (a,c) 50 nm × 100 nm, (b,d) 100 nm × 200 nm. For each device, several loops are shown which correspond to effective field values between −500 Oe and +500 Oe. Current induced IS is not reproducible from device to device. The parabolic shape is due to Joule heating of the sample.

Fig. 3 : Resistance versus DC current loops for 4 different nanodevices : (a,c) 50 nm × 100 nm, (b,d) 100 nm × 200 nm. For each device, several loops are shown which correspond to effective field values between −500 Oe and +500 Oe. Current induced IS is not reproducible from device to device. The parabolic shape is due to Joule heating of the sample.

Institut de Physique et de Chimie des Matériaux de Strasbourg

  • /Crédits
  • /Mentions légales
  • /Se connecter
Optimization WordPress Plugins & Solutions by W3 EDGE