Symétries et stabilité de noyaux atomiques : exemples des projets

J. Dudek

Institut Pluridisciplinaire Hubert Curien
Département de Recherches Subatomiques UMR7178,
IN2P3-CNRS
et
Université de Strasbourg, France
Pathways for Future Facilities and Astrophysics ...

Symmetries and Nuclear Stability: Examples of Projects

Jerzy DUDEK, University of Strasbourg, France
Part I

General Features of the Nucleon-Nucleon Interactions
Let $\hat{x} \overset{df}{=} \{\hat{r}, \hat{p}, \hat{s}, \hat{t}\}$. Nucleon-Nucleon interactions have the form:

$$\hat{V}(\hat{x}_1, \hat{x}_2) \equiv \hat{V}_C(\hat{x}_1, \hat{x}_2) + \hat{V}_T(\hat{x}_1, \hat{x}_2) + \hat{V}_{LS}(\hat{x}_1, \hat{x}_2) + \hat{V}_{LL}(\hat{x}_1, \hat{x}_2)$$

where: C-central, T-tensor, LS-spin-orbit and LL^2-quadratic LS
Fundamental Properties of Nucleon-Nucleon Forces [1]

Let $\hat{x} \overset{df}{=} \{\hat{r}, \hat{p}, \hat{s}, \hat{t}\}$. Nucleon-Nucleon interactions have the form:

$$\tilde{V}(\hat{x}_1, \hat{x}_2) \equiv \tilde{V}_C(\hat{x}_1, \hat{x}_2) + \tilde{V}_T(\hat{x}_1, \hat{x}_2) + \tilde{V}_{LS}(\hat{x}_1, \hat{x}_2) + \tilde{V}_{LL}(\hat{x}_1, \hat{x}_2)$$

where: C-central, T-tensor, LS-spin-orbit and LL^2-quadratic LS

Central Interaction ($r_{12} \equiv |\vec{r}_1 - \vec{r}_2|$)

$$\tilde{V}_C(\hat{x}_1, \hat{x}_2) = V_0(r_{12}) + V_s(r_{12}) [\vec{s}^{(1)} \cdot \vec{s}^{(2)}]$$
$$+ V_t(r_{12}) [\vec{t}^{(1)} \cdot \vec{t}^{(2)}]$$
$$+ V_{s-t}(r_{12}) [\vec{s}^{(1)} \cdot \vec{s}^{(2)}] [\vec{t}^{(1)} \cdot \vec{t}^{(2)}]$$

Invariant under rotations, translations, inversion and time-reversal
Fundamental Properties of Nucleon-Nucleon Forces [2]

Let \(\hat{x}^df \equiv \{ \hat{r}, \hat{p}, \hat{s}, \hat{t} \} \). Nucleon-Nucleon interactions have the form:

\[
\hat{V}(\hat{x}_1, \hat{x}_2) \equiv \hat{V}_C(\hat{x}_1, \hat{x}_2) + \hat{V}_T(\hat{x}_1, \hat{x}_2) + \hat{V}_{LS}(\hat{x}_1, \hat{x}_2) + \hat{V}_{LL}(\hat{x}_1, \hat{x}_2)
\]

where: \(C \)-central, \(T \)-tensor, \(LS \)-spin-orbit and \(LL^2 \)-quadratic LS

Tensor Interaction [Non-Central]

\[
\mathcal{S}^{(12)} \overset{df}{=} \frac{3 (\mathbf{s}_1 \cdot \mathbf{r}_{12})(\mathbf{s}_2 \cdot \mathbf{r}_{12}) - (\mathbf{s}_1 \cdot \mathbf{s}_2) \mathbf{r}_{12}^2}{r_{12}^2}
\]

and

\[
r_{12} \overset{df}{=} |\mathbf{r}_1 - \mathbf{r}_2|
\]

\[
\hat{V}_T(\hat{x}_1, \hat{x}_2) = [V_{t_0}(r_{12}) + V_{t_1}(r_{12}) \mathbf{t}_1 \cdot \mathbf{t}_2] \mathcal{S}^{(12)}
\]

Invariant under rotations, translations, inversion and time-reversal
Fundamental Properties of Nucleon-Nucleon Forces [3]

Let \(\mathbf{x}^{df} = \{ \hat{r}, \hat{p}, \hat{s}, \hat{t} \} \). Nucleon-Nucleon interactions have the form:

\[
\hat{V}(\mathbf{x}_1, \mathbf{x}_2) \equiv \hat{V}_C(\mathbf{x}_1, \mathbf{x}_2) + \hat{V}_T(\mathbf{x}_1, \mathbf{x}_2) + \hat{V}_{LS}(\mathbf{x}_1, \mathbf{x}_2) + \hat{V}_{LL}(\mathbf{x}_1, \mathbf{x}_2)
\]

where: \(C \)-central, \(T \)-tensor, \(LS \)-spin-orbit and \(LL^2 \)-quadratic LS

Spin-Orbit Interaction [Non-Local]

\[
\mathbf{L}^{df} \equiv \frac{1}{2}(\mathbf{r}_1 - \mathbf{r}_2) \wedge (\mathbf{p}_1 - \mathbf{p}_2), \quad r_{12}^{df} \equiv |\mathbf{r}_1 - \mathbf{r}_2| \quad \text{and} \quad \mathbf{S}^{df} \equiv \mathbf{s}_1 + \mathbf{s}_2
\]

\[
\hat{V}_{LS}(\mathbf{x}_1, \mathbf{x}_2) = [V_{LS}^{t_0}(r_{12}) + V_{LS}^{t_1}(r_{12}) \mathbf{t}_1 \cdot \mathbf{t}_2]\mathbf{L} \cdot \mathbf{S}
\]

Invariant under rotations, translations, inversion and time-reversal
Let $\hat{x}^{df} \equiv \{\hat{r}, \hat{p}, \hat{s}, \hat{t}\}$. Nucleon-Nucleon interactions have the form:

$$\hat{V}(\hat{x}_1, \hat{x}_2) \equiv \hat{V}_C(\hat{x}_1, \hat{x}_2) + \hat{V}_T(\hat{x}_1, \hat{x}_2) + \hat{V}_{LS}(\hat{x}_1, \hat{x}_2) + \hat{V}_{LL}(\hat{x}_1, \hat{x}_2)$$

where: C-central, T-tensor, LS-spin-orbit and LL^2-quadratic LS

Quadratic Spin-Orbit Interaction [Non-Local]

$$\vec{L}^{df} \equiv \frac{1}{2}(\vec{r}_1 - \vec{r}_2) \wedge (\vec{p}_1 - \vec{p}_2) \quad \text{and} \quad r_{12}^{df} \equiv |\vec{r}_1 - \vec{r}_2|$$

$$\hat{V}_{LL}(\hat{x}_1, \hat{x}_2) = V_{LL}(r_{12}) \{ (\vec{s}_1 \cdot \vec{s}_2) \vec{L}^2 - \frac{1}{2} [(\vec{s}_1 \cdot \vec{L})(\vec{s}_2 \cdot \vec{L}) + (\vec{s}_2 \cdot \vec{L})(\vec{s}_1 \cdot \vec{L})] \}$$

Invariant under rotations, translations, inversion and time-reversal
Consider the motion of a system of $N = 100$ nucleons.
Dynamics: What Is Doable and What Is Not?

- Consider the motion of a system of $N = 100$ nucleons
- What is the expected complexity of the description?
Dynamics: What Is Doable and What Is Not?

- Consider the motion of a system of \(N = 100 \) nucleons
- What is the expected complexity of the description?

\[
\hat{H}(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N) \psi = E \psi
\]

\(100 \times 12 = 1200 \) operators

Conclusion: It is out of question to attack by brutal force...
Consider the motion of a system of \(N = 100 \) nucleons.

What is the expected complexity of the description?

\[
\hat{H}(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N)\psi = E\psi
\]

100\(\times\)12 = 1200 operators

Conclusion:
It is out of question to attack by brutal force...
But there exist helpful mechanisms:

Symmetries and Spontaneous Symmetry Breaking
Symmetry: Exact, Approximate, Spontaneously Broken

From preceding discussion we assume that the N-N interaction

\[\hat{V}(\hat{x}_1, \hat{x}_2) \equiv \hat{V}_C(\hat{x}_1, \hat{x}_2) + \hat{V}_T(\hat{x}_1, \hat{x}_2) + \hat{V}_{LS}(\hat{x}_1, \hat{x}_2) + \hat{V}_{LL^2}(\hat{x}_1, \hat{x}_2) \]

is invariant under rotations, translations, inversion and time-reversal
From preceding discussion we assume that the N-N interaction
\[\hat{V}(\hat{x}_1, \hat{x}_2) \equiv \hat{V}_C(\hat{x}_1, \hat{x}_2) + \hat{V}_T(\hat{x}_1, \hat{x}_2) + \hat{V}_{LS}(\hat{x}_1, \hat{x}_2) + \hat{V}_{LL^2}(\hat{x}_1, \hat{x}_2) \]
is invariant under rotations, translations, inversion and time-reversal.

Spherical Symmetry?

The Nuclear Mean Field Theory ...
... is usually very successful. It is based on
\[\hat{V}_{mf}(\hat{x}) = \int \psi^*(x') \hat{V}(\hat{x}, \hat{x}') \psi(x') \, dx' \]

Some or all of the above symmetries will be broken by the mean-field Hamiltonian.
From preceding discussion we assume that the N-N interaction
\[\hat{V}(\hat{x}_1, \hat{x}_2) \equiv \hat{V}_C(\hat{x}_1, \hat{x}_2) + \hat{V}_T(\hat{x}_1, \hat{x}_2) + \hat{V}_{LS}(\hat{x}_1, \hat{x}_2) + \hat{V}_{LL^2}(\hat{x}_1, \hat{x}_2) \]
is invariant under rotations, translations, inversion and time-reversal

Spherical Symmetry?

The Nuclear Mean Field Theory ...

... is usually very successful. It is based on
\[\hat{V}_{mf}(\hat{x}) = \int \psi^*(x') \hat{V}(\hat{x}, \hat{x}') \psi(x') \, dx' \]

Some or all of the above symmetries will be broken by the mean-field Hamiltonian
Among nearly 3000 systems known experimentally, about two hundreds are stable; they are marked in black.
In Majority of Them Spherical Symmetry is Broken

Among nearly 3000 systems known experimentally, more than 80% are strongly deformed.
A Few Important Conclusions:

- Experiments suggest that the nuclear mean-field, in general deformed, should be a dominating feature of the systems*)

*) Provided, the theory knows how to manage the corresponding Hamiltonian.

Jerzy DUDEK, University of Strasbourg, France
Symmetries and Nuclear Stability: Examples of Projects
A Few Important Conclusions:

- Experiments suggest that the nuclear mean-field, in general deformed, should be a dominating feature of the systems\(^*)

- The mean-field is by construction a one-body operator what implies significant simplifications

\[
\hat{H}_{\text{nature}}(\hat{x}_1, \hat{x}_2, \ldots \hat{x}_N) \approx \hat{H}_{\text{mean field}} = \sum_{i=1}^{N} \hat{h}(\hat{x}_i)
\]

\(^*)\text{Provided, the theory knows how to manage the corresponding Hamiltonian}
A Few Important Conclusions:

- Experiments suggest that the nuclear mean-field, in general deformed, should be a dominating feature of the systems.

- The mean-field is by construction a one-body operator what implies significant simplifications.

\[
\hat{H}_{\text{nature}}(\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_N) \approx \hat{H}_{\text{mean field}} = \sum_{i=1}^{N} \hat{h}(\hat{x}_i)
\]

- From now on, effective theories can be constructed:

\[
\hat{H}_{\text{nature}} \approx \hat{H}_{\text{mean field}} + \hat{H}_{\text{residual}}
\]

*) Provided, the theory knows how to manage the corresponding Hamiltonian.
A Possible General Structure of Hamiltonians

- The unknown ‘true’ Hamiltonian is replaced by two effective ones

\[\hat{H}_{\text{nature}} \rightarrow \hat{H} \approx \sum_{i=1}^{N} \hat{h}(\hat{x}_i) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \hat{V}^{\text{res}}(\hat{x}_i \leftrightarrow \hat{x}_j) \]

- The mean-field term is in practice a self-consistent Hartree-Fock
- The form of the effective residual interactions, is influenced by microscopic theories (typically: scalar, inversion-invariant, time-even)
A Possible General Structure of Hamiltonians

- The unknown ‘true’ Hamiltonian is replaced by two effective ones:

\[\hat{H}_{\text{nature}} \rightarrow \hat{H} \approx \sum_{i=1}^{N} \hat{h}(\hat{x}_i) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \hat{V}^{\text{res}}(\hat{x}_i \leftrightarrow \hat{x}_j) \]

- The mean-field term is in practice a self-consistent Hartree-Fock.
A Possible General Structure of Hamiltonians

- The unknown ‘true’ Hamiltonian is replaced by two effective ones

\[
\hat{H}_{\text{nature}} \rightarrow \hat{H} \approx \sum_{i=1}^{N} \hat{h}(\hat{x}_i) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \hat{V}^{\text{res}}(\hat{x}_i \leftrightarrow \hat{x}_j)
\]

- The mean-field term is in practice a self-consistent Hartree-Fock
- The form of the effective residual interactions, is influenced by microscopic theories (typically: scalar, inversion-invariant, time-even)
A Possible General Structure of Hamiltonians

- The unknown ‘true’ Hamiltonian is replaced by two effective ones

\[\hat{H}_\text{nature} \rightarrow \hat{H} \approx \sum_{i=1}^{N} \hat{h}(\hat{x}_i) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \hat{V}_\text{res}(\hat{x}_i \leftrightarrow \hat{x}_j) \]

- The mean-field term is in practice a self-consistent Hartree-Fock
- The form of the effective residual interactions, is influenced by microscopic theories (typically: scalar, inversion-invariant, time-even)

\[\hat{H}_\text{res} = \hat{V}_\text{pairing} + \hat{V}_\text{long range} + \hat{V}_\text{vib.coupling} + \ldots \]
Part II

Nuclear Stability, Spectra, Symmetries and Groups
Consider a typical outcome of the Mean-Field calculation: the shell structures and the total energies.

- Presence of sufficiently strong gaps correlates with local minima of the total nuclear energy.

The ‘Deformation Parameter’ axis represents several deformations of the mean field, e.g., \(Q_{\lambda \mu} \), \(\alpha_{\lambda \mu} \).
Reminder: Global Stability vs. Gaps in SP Spectra [1]

- Consider a typical outcome of the Mean-Field calculation: the shell structures and the total energies.
- Presence of sufficiently strong gaps correlates with local minima of the total nuclear energy.
- The ‘Deformation Parameter’ axis represents several deformations of the mean field e.g. \(\{Q_{\lambda\mu}\}, \{\alpha_{\lambda\mu}\}\).
Consider a typical outcome of the Mean-Field calculation: the shell structures and the total energies.

Presence of sufficiently strong gaps correlates with local minima of the total nuclear energy.

The ‘Deformation Parameter’ axis represents several deformations of the mean field e.g. \(\{ Q_{\lambda\mu} \} \), \(\{ \alpha_{\lambda\mu} \} \).
Posing the problem:

Construction of our New Theory of Nuclear Stability will be equivalent to constructing a systematic method of looking for big Mean-Field Gaps

Strategical Lines:

1. Suppose Mean-Field parameters are fixed already for instance through fits to levels in spherical nuclei

2. We expect that the mean-field calculations will give bigger gaps at shapes with certain symmetries and smaller at the others

This talk is about ‘How this is going to happen’?
Posing the problem:

Construction of our New Theory of Nuclear Stability will be equivalent to constructing a systematic method of looking for big Mean-Field Gaps

Strategical Lines:

1. Suppose Mean-Field parameters are fixed already for instance through fits to levels in spherical nuclei

2. We expect that the mean-field calculations will give bigger gaps at shapes with certain symmetries and smaller at the others

This talk is about ‘How this is going to happen’?
Posing the problem:

Construction of our New Theory of Nuclear Stability will be equivalent to constructing a systematic method of looking for big Mean-Field Gaps

Strategical Lines:

1. Suppose Mean-Field parameters are fixed already for instance through fits to levels in spherical nuclei

2. We expect that the mean-field calculations will give bigger gaps at shapes with certain symmetries and smaller at the others

This talk is about ‘How this is going to happen’?
Posing the problem:

Construction of our New Theory of Nuclear Stability will be equivalent to constructing a systematic method of looking for big Mean-Field Gaps.

Strategical Lines:

1. Suppose Mean-Field parameters are fixed already for instance through fits to levels in spherical nuclei.
2. We expect that the mean-field calculations will give bigger gaps at shapes with certain symmetries and smaller at the others.

This talk is about ‘How this is going to happen’?
Posing the problem:

Construction of our New Theory of Nuclear Stability will be equivalent to constructing a systematic method of looking for big Mean-Field Gaps

Strategical Lines:

1. Suppose Mean-Field parameters are fixed already for instance through fits to levels in spherical nuclei

2. We expect that the mean-field calculations will give bigger gaps at shapes with certain symmetries and smaller at the others

This talk is about ‘How this is going to happen’?
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO$_3$-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO$_3$ as sub-groups

As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO$_3$

Comment about Practical Issues:

This is good news because all such groups are already well known ... what does not imply that we have no work to do!
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO_3-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO_3 as sub-groups. As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO_3.

Comment about Practical Issues:

This is good news because all such groups are already well known ... what does not imply that we have no work to do!
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO_3-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO_3 as sub-groups. As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO_3.

Comment about Practical Issues:

This is good news because all such groups are already well known. ... what does not imply that we have no work to do!
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO$_3$-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO$_3$ as sub-groups

As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO$_3$

Comment about Practical Issues:

This is good news because all such groups are already well known ... what does not imply that we have no work to do!
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO_3-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO_3 as sub-groups. As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO_3

Comment about Practical Issues:

This is good news because all such groups are already well known ... what does not imply that we have no work to do!
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO$_3$-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO$_3$ as sub-groups

As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO$_3$

Comment about Practical Issues:

This is good news because all such groups are already well known ... what does not imply that we have no work to do!
Logical Consistency:

The New Theory of Nuclear Stability must contain, as particular cases, all the mechanisms of stability known so far [e.g. spherical symmetry that is SO_3-group]

Mathematical Implications:

All geometrical 3D-symmetries are contained in SO_3 as sub-groups. As a consequence: It will be sufficient to analyse all physically meaningful subgroups [point-groups] contained in SO_3

Comment about Practical Issues:

This is good news because all such groups are already well known ... what does not imply that we have no work to do!
Physically Meaningful Point-Groups Contained in SO_3

Dashed lines indicate that the subgroup marked is not invariant.

In nuclear structure physics the point-groups used so far, mainly implicitly, are D_2 and D_{2h} ['triaxial nuclei']. No other discrete subgroups of SO_3 have been explicitly used in the past.

The diagram shows possible candidate point-groups: How to profit from this information?

Jerzy DUDEK, University of Strasbourg, France
Dashed lines indicate that the subgroup marked is not invariant.

In nuclear structure physics the point-groups used so far, mainly implicitly, are D_2 and D_{2h} ['triaxial nuclei']. No other discrete subgroups of SO_3 have been explicitly used in the past.

The diagram shows possible candidate point-groups: How to profit from this information?
Single-Particle Gaps and Groups of Symmetry
Symmetries, Representations and Degeneracies

- Given Hamiltonian H and a group: $\mathcal{G} = \{O_1, O_2, \ldots, O_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.
 \[[H, O_k] = 0 \quad \text{with} \quad k = 1, 2, \ldots, f \]

- Let irreducible representations of \mathcal{G} be $\{R_1, R_2, \ldots, R_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{\varepsilon_\nu\}$ of the problem
 \[H \psi_\nu = \varepsilon_\nu \psi_\nu \]

appear in multiplets d_1-fold, d_2-fold ... degenerate
Symmetries, Representations and Degeneracies

- Given Hamiltonian H and a group: $\mathcal{G} = \{O_1, O_2, \ldots O_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.
 $$[H, O_k] = 0 \quad \text{with} \quad k = 1, 2, \ldots f$$
- Let irreducible representations of \mathcal{G} be $\{R_1, R_2, \ldots R_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots d_r\}$, respectively
- Then the eigenvalues $\{\varepsilon_\nu\}$ of the problem
 $$H\psi_\nu = \varepsilon_\nu\psi_\nu$$
 appear in multiplets d_1-fold, d_2-fold ... degenerate
Outline of our New Theory of Nuclear Stability

Symmetries, Representations and Degeneracies

- Given Hamiltonian H and a group: $G = \{O_1, O_2, \ldots O_f\}$
- Assume that G is a symmetry group of H i.e.

\[[H, O_k] = 0 \text{ with } k = 1, 2, \ldots f \]

- Let irreducible representations of G be $\{R_1, R_2, \ldots R_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots d_r\}$, respectively
- Then the eigenvalues $\{\varepsilon_\nu\}$ of the problem

\[H\psi_\nu = \varepsilon_\nu \psi_\nu \]

appear in multiplets d_1-fold, d_2-fold ... degenerate
Given Hamiltonian H and a group: $G = \{O_1, O_2, \ldots O_f\}$

Assume that G is a symmetry group of H i.e.

$$[H, O_k] = 0 \quad \text{with} \quad k = 1, 2, \ldots f$$

Let irreducible representations of G be $\{R_1, R_2, \ldots R_r\}$

Let their dimensions be $\{d_1, d_2, \ldots d_r\}$, respectively

Then the eigenvalues $\{\varepsilon_\nu\}$ of the problem

$$H \psi_\nu = \varepsilon_\nu \psi_\nu$$

appear in multiplets d_1-fold, d_2-fold ... degenerate
Outline of our New Theory of Nuclear Stability

Single-Particle Structure and Global Stability of Nuclei

Single-Particle Gaps and Groups of Symmetry

Symmetries, Representations and Degeneracies

- Given Hamiltonian H and a group: $\mathcal{G} = \{O_1, O_2, \ldots, O_f\}$
- Assume that \mathcal{G} is a symmetry group of H i.e.

\[[H, O_k] = 0 \quad \text{with} \quad k = 1, 2, \ldots, f \]

- Let irreducible representations of \mathcal{G} be $\{\mathcal{R}_1, \mathcal{R}_2, \ldots, \mathcal{R}_r\}$
- Let their dimensions be $\{d_1, d_2, \ldots, d_r\}$, respectively
- Then the eigenvalues $\{\varepsilon_\nu\}$ of the problem

\[H\psi_\nu = \varepsilon_\nu \psi_\nu \]

appear in multiplets d_1-fold, d_2-fold ... degenerate
Roughly: The average level spacings within an irrep increase by a factor of 6. The total spectrum may present big unprecedented gaps.
Symmetries and Gaps in Nuclear Context: Schematic

Roughly: The average level spacings within an irrep increase by a factor of 6. The total spectrum may present big unprecedented gaps.
Symmetries, Representations and Degeneracies

<table>
<thead>
<tr>
<th>No.</th>
<th>Group G_T^n</th>
<th>No. Irr.</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.</td>
<td>O^{D}_{h}</td>
<td>6</td>
<td>4 x 2D and 2 x 4D</td>
</tr>
<tr>
<td>02.</td>
<td>O^{D}</td>
<td>3</td>
<td>2 x 2D and 1 x 4D</td>
</tr>
<tr>
<td>03.</td>
<td>T^{D}_{d}</td>
<td>3</td>
<td>2 x 2D and 1 x 4D</td>
</tr>
<tr>
<td>04.</td>
<td>C^{D}_{6h}</td>
<td>12 → 6</td>
<td>12 x 1D</td>
</tr>
<tr>
<td>05.</td>
<td>D^{D}_{6h}</td>
<td>6</td>
<td>6 x 2D</td>
</tr>
<tr>
<td>06.</td>
<td>T^{D}_{h}</td>
<td>6</td>
<td>6 x 2D</td>
</tr>
<tr>
<td>07.</td>
<td>D^{D}_{4h}</td>
<td>4</td>
<td>4 x 2D</td>
</tr>
<tr>
<td></td>
<td>D^{D}_{2h}</td>
<td>2</td>
<td>2 x 2D (reference)</td>
</tr>
</tbody>
</table>

Table: *Point-groups and their Irreducible Representations [Part 1]*.
Symmetries, Representations and Degeneracies

<table>
<thead>
<tr>
<th>No.</th>
<th>Group</th>
<th>No. Irr.</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>08.</td>
<td>C_{4h}^D</td>
<td>$8 \rightarrow 4$</td>
<td>$8 \times 1D$</td>
</tr>
<tr>
<td>09.</td>
<td>T^D</td>
<td>3</td>
<td>$3 \times 2D$</td>
</tr>
<tr>
<td>10.</td>
<td>D_{3h}^D</td>
<td>3</td>
<td>$3 \times 2D$</td>
</tr>
<tr>
<td>11.</td>
<td>C_{6v}^D</td>
<td>3</td>
<td>$3 \times 2D$</td>
</tr>
<tr>
<td>12.</td>
<td>D_6^D</td>
<td>3</td>
<td>$3 \times 2D$</td>
</tr>
<tr>
<td>13.</td>
<td>C_6^D</td>
<td>$6 \rightarrow 3$</td>
<td>$6 \times 1D$</td>
</tr>
<tr>
<td>14.</td>
<td>S_6^D</td>
<td>$6 \rightarrow 3$</td>
<td>$6 \times 1D$</td>
</tr>
<tr>
<td>15.</td>
<td>C_{3h}^D</td>
<td>$6 \rightarrow 3$</td>
<td>$6 \times 1D$</td>
</tr>
<tr>
<td>16.</td>
<td>C_{3i}^D</td>
<td>$6 \rightarrow 3$</td>
<td>$6 \times 1D$</td>
</tr>
</tbody>
</table>

Table: *Point-groups and their Irreducible Representations [Part 2].*
Conclusions at this point:

Among the ‘standard 32 point-groups’, subgroups of SO_3, there are 16 (!) that satisfy more favourably the big-gap criteria than the ‘reference’ group D_{2h} ['usual’ tri-axial nuclei]

Mathematical Implications:

1. To increase chances of finding mean-field big gaps focus on point groups with high-dimension irreps or with many irreps
2. There are only 2 structurally non-equivalent symmetries that give degeneracies larger than 2; octahedral O^D_h and tetrahedral T^D_d
3. From now on octahedral and tetrahedral symmetries are the first candidates on the list - we call them high-rank symmetries
Conclusions at this point:

Among the ‘standard 32 point-groups’, subgroups of SO$_3$, there are 16 (!) that satisfy more favourably the big-gap criteria than the ‘reference’ group D_{2h} ['usual’ tri-axial nuclei]

Mathematical Implications:

1. To increase chances of finding mean-field big gaps focus on point groups with high-dimension irreps or with many irreps

2. There are only 2 structurally non-equivalent symmetries that give degeneracies larger than 2; octahedral O^D and tetrahedral T^D

3. From now on octahedral and tetrahedral symmetries are the first candidates on the list - we call them high-rank symmetries
Conclusions at this point:

Among the ‘standard 32 point-groups’, subgroups of SO_3, there are 16 (!) that satisfy more favourably the big-gap criteria than the ‘reference’ group D_{2h} ['usual’ tri-axial nuclei]

Mathematical Implications:

1. To increase chances of finding mean-field big gaps focus on point groups with high-dimension irreps or with many irreps

2. There are only 2 structurally non-equivalent symmetries that give degeneracies larger than 2; octahedral O^D_h and tetrahedral T^D_d

3. From now on octahedral and tetrahedral symmetries are the first candidates on the list - we call them high-rank symmetries
Conclusions at this point:

Among the ‘standard 32 point-groups’, subgroups of SO$_3$, there are 16 (!) that satisfy more favourably the big-gap criteria than the ‘reference’ group D_{2h} ['usual’ tri-axial nuclei]

Mathematical Implications:

1. To increase chances of finding mean-field big gaps focus on point groups with high-dimension irreps or with many irreps

2. There are only 2 structurally non-equivalent symmetries that give degeneracies larger than 2; octahedral O^D_h and tetrahedral T^D_d

3. From now on octahedral and tetrahedral symmetries are the first candidates on the list - we call them high-rank symmetries
Conclusions at this point:

Among the ‘standard 32 point-groups’, subgroups of SO$_3$, there are 16 (!) that satisfy more favourably the big-gap criteria than the ‘reference’ group D$_{2h}$ [‘usual’ tri-axial nuclei]

Mathematical Implications:

1. To increase chances of finding mean-field big gaps focus on point groups with high-dimension irreps or with many irreps

2. There are only 2 structurally non-equivalent symmetries that give degeneracies larger than 2; octahedral O$_h^D$ and tetrahedral T$_d^D$

3. From now on octahedral and tetrahedral symmetries are the first candidates on the list - we call them high-rank symmetries
Conclusions at this point:

Among the ‘standard 32 point-groups’, subgroups of SO$_3$, there are 16 (!) that satisfy more favourably the big-gap criteria than the ‘reference’ group D$_{2h}$ [‘usual’ tri-axial nuclei]

Mathematical Implications:

1. To increase chances of finding mean-field big gaps focus on point groups with high-dimension irreps or with many irreps
2. There are only 2 structurally non-equivalent symmetries that give degeneracies larger than 2; octahedral O$_h$ and tetrahedral T$_d$
3. From now on octahedral and tetrahedral symmetries are the first candidates on the list - we call them high-rank symmetries
Nuclear D_{2d}-Group: 3D Examples

The nuclear D_{2d}-symmetric shapes have been predicted to coexist with the axial super-deformed shapes at high spins (JD and X. Li)

Observations:
- Nuclear elongation in the range of $\alpha_{20} \sim (0.45 \rightarrow 0.55)$;
- Barriers between the coexisting minima $\sim (1 \rightarrow 2) \text{ MeV}$
Nuclear D_{3d}-Group: 3D Examples

The nuclear D_{3d}-symmetric shapes are expected at high spins; they correspond to superposition of α_{20} and α_{43} (inversion symmetric).

Observations:
- Moderately elongated nuclei can form D_{3d}-symmetry shapes
- Probably seen already (remain mis-interpreted as tri-axiality)
Nuclear C_{3h}-Group ('Octupole'): 3D Examples

The nuclear C_{3h}-symmetric shapes are expected at high spins; they correspond to superposition of α_{20} and α_{33}

Observations:
- Nuclei with C_{3h}-symmetry predicted to coexist with octupoles
- Probably seen already (and mis-interpreted in terms of $I^\pi = 3^-$)

Figure: Elongation axis
Figure: Perspective 1
Figure: Perspective 2
Part III

What Do We Need at This Stage?

Physical Realisation of the Mathematical Guide-lines:
- Learn constructing the Mean-Field Hamiltonians invariant under pre-selected point-group → examine new quantum [shell] effects
- Formulate the theoretical predictions [identification criteria]

Verification by Experiments:
- Look for the experimental evidence in agreement with the criteria
- Prepare systematic comparison between theory and experiments
What Do We Need at This Stage?

Physical Realisation of the Mathematical Guide-lines:

- Learn constructing the Mean-Field Hamiltonians invariant under pre-selected point-group → examine new quantum [shell] effects
- Formulate the theoretical predictions [identification criteria]

Verification by Experiments:

- Look for the experimental evidence in agreement with the criteria
- Prepare systematic comparison between theory and experiments
What Do We Need at This Stage?

Physical Realisation of the Mathematical Guide-lines:

- Learn constructing the Mean-Field Hamiltonians invariant under pre-selected point-group → examine new quantum [shell] effects
- Formulate the theoretical predictions [identification criteria]

Verification by Experiments:

- Look for the experimental evidence in agreement with the criteria
- Prepare systematic comparison between theory and experiments
Mean-Field Hamiltonians Invariant under Group G

- Given group $G = \{\hat{O}_1, \hat{O}_2, \ldots \hat{O}_f\}$. How to construct a realistic Hamiltonian invariant under all transformations in G?

- Start with Woods-Saxon Hamiltonian; the HF mean-field next

- First step: Construct auxiliary invariant surfaces starting with

$$\Sigma : \quad R(\theta, \varphi) = R_0 c(\{\alpha\}) \left[1 + \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\theta, \varphi) \right]$$

- The condition of invariance:

$$\Sigma \xrightarrow{\hat{O}} \Sigma' \equiv \Sigma \quad \forall \quad \hat{O}$$

- The latter can be written down as

$$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} \left[\hat{O} Y_{\lambda\mu}(\theta, \varphi) \right] = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\theta, \varphi)$$

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Mean-Field Hamiltonians Invariant under Group G

- Given group $\mathcal{G} = \{\hat{O}_1, \hat{O}_2, \ldots \hat{O}_f\}$. How to construct a realistic Hamiltonian invariant under all transformations in \mathcal{G}?

- Start with Woods-Saxon Hamiltonian; the HF mean-field next

- First step: Construct auxiliary invariant surfaces starting with

$$\Sigma : \quad R(\vartheta, \varphi) = R_0 c(\{\alpha\})\left[1 + \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\vartheta, \varphi)\right]$$

- The condition of invariance:

$$\Sigma \xrightarrow{\hat{O}} \Sigma' \equiv \Sigma \quad \forall \ \hat{O}$$

- The latter can be written down as

$$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\vartheta, \varphi) = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi)$$
Mean-Field Hamiltonians Invariant under Group G

- Given group $G = \{\hat{O}_1, \hat{O}_2, \ldots \hat{O}_f\}$. How to construct a realistic Hamiltonian invariant under all transformations in G?

- Start with Woods-Saxon Hamiltonian; the HF mean-field next

- First step: Construct auxiliary invariant surfaces starting with

$$\Sigma : \quad R(\vartheta, \varphi) = R_0 c(\{\alpha\}) \left[1 + \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu}^* Y_{\lambda \mu}(\vartheta, \varphi) \right]$$

- The condition of invariance:

$$\Sigma \xrightarrow{\hat{O}} \Sigma' \equiv \Sigma \ \forall \ \hat{O}$$

- The latter can be written down as

$$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu}^* Y_{\lambda \mu}(\vartheta, \varphi) = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu} Y_{\lambda \mu}(\vartheta, \varphi)$$
Mean-Field Hamiltonians Invariant under Group G

- Given group \(G = \{ \hat{O}_1, \hat{O}_2, \ldots, \hat{O}_f \} \). How to construct a realistic Hamiltonian invariant under all transformations in \(G \)?

- Start with Woods-Saxon Hamiltonian; the HF mean-field next

- First step: Construct auxiliary invariant surfaces starting with

 \[
 \Sigma : \quad R(\vartheta, \varphi) = R_0 c(\{\alpha\}) \left[1 + \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu}^* Y_{\lambda\mu}(\vartheta, \varphi) \right]
 \]

 The condition of invariance:

 \[
 \Sigma \xrightarrow{\hat{O}} \Sigma' \equiv \Sigma \quad \forall \ \hat{O}
 \]

- The latter can be written down as

 \[
 \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi) = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi)
 \]
Mean-Field Hamiltonians Invariant under Group G

- Given group $G = \{ \hat{O}_1, \hat{O}_2, \ldots \hat{O}_f \}$. How to construct a realistic Hamiltonian invariant under all transformations in G?

- Start with Woods-Saxon Hamiltonian; the HF mean-field next

- First step: Construct auxiliary invariant surfaces starting with

$$\Sigma : \quad R(\vartheta, \varphi) = R_0 c(\{\alpha\}) [1 + \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha^*_\lambda\mu Y_{\lambda\mu}(\vartheta, \varphi)]$$

- The condition of invariance:

$$\Sigma \xrightarrow{\hat{O}} \Sigma' \equiv \Sigma \quad \forall \quad \hat{O}$$

- The latter can be written down as

$$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} [\hat{O} Y_{\lambda\mu}(\vartheta, \varphi)] = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi)$$
New Theory: Verification, Relation to Experiment

Specific Point-Group Symmetry Realisations (Order λ)

Invariant Mean-Field Hamiltonian [2]

- In what follows we will need a representation of the operators $\hat{O} \in G$ adapted to the action on spherical harmonics $Y_{\lambda\mu}(\vartheta, \varphi)$.

- The action of proper rotations can be written down as

 $$\hat{O} \rightarrow R(\Omega) \equiv \exp(i\alpha\hat{j}_z + i\beta\hat{j}_y + i\gamma\hat{j}_z')$$

- Using this notation the invariance condition takes the form

 $$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} [\hat{O} Y_{\lambda\mu}(\vartheta, \varphi)] = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} \sum_{\mu'=-\lambda}^{\lambda} D_{\mu'\mu}^{\lambda}(\Omega) Y_{\lambda\mu'}(\vartheta, \varphi)$$

- The latter can be written down $\forall \vartheta, \varphi$ as

 $$\sum_{\mu'=-\lambda}^{\lambda_{\text{max}}} \sum_{\lambda=2}^{\lambda} [\sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} D_{\mu'\mu}^{\lambda}(\Omega) - \alpha_{\lambda\mu'}] Y_{\lambda\mu}(\vartheta, \varphi) = 0$$

Jerzy DUDEK, University of Strasbourg, France
Invariant Mean-Field Hamiltonian [2]

- In what follows we will need a representation of the operators $\hat{O} \in G$ adapted to the action on spherical harmonics $Y_{\lambda \mu}(\vartheta, \varphi)$.

- The action of proper rotations can be written down as

 $$\hat{O} \rightarrow R(\Omega) \equiv \exp(i\alpha \hat{j}_z + i\beta \hat{j}_y + i\gamma \hat{j}_z')$$

- Using this notation the invariance condition takes the form

 $$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu} \left[\hat{O} Y_{\lambda \mu}(\vartheta, \varphi) \right] = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu} \sum_{\mu'=-\lambda}^{\lambda} D_{\mu' \mu}^{\lambda}(\Omega) Y_{\lambda \mu'}(\vartheta, \varphi)$$

- The latter can be written down $\forall \ \vartheta, \varphi$ as

 $$\sum_{\mu'=-\lambda}^{\lambda} \sum_{\lambda=2}^{\lambda_{\text{max}}} \left[\sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda \mu} D_{\mu' \mu}^{\lambda}(\Omega) - \alpha_{\lambda \mu'} \right] Y_{\lambda \mu}(\vartheta, \varphi) = 0$$
Invariant Mean-Field Hamiltonian [2]

- In what follows we will need a representation of the operators $\hat{O} \in G$ adapted to the action on spherical harmonics $Y_{\lambda\mu}(\vartheta, \varphi)$.

- The action of proper rotations can be written down as:
 $$\hat{O} \rightarrow R(\Omega) \equiv \exp(i\alpha \hat{j}_z + i\beta \hat{j}_y + i\gamma \hat{j}_z')$$

- Using this notation the invariance condition takes the form:
 $$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} [\hat{O} Y_{\lambda\mu}(\vartheta, \varphi)] = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} \sum_{\mu'=-\lambda}^{\lambda} D_{\mu'\mu}^\lambda(\Omega) Y_{\lambda\mu'}(\vartheta, \varphi)$$

- The latter can be written down $\forall \vartheta, \varphi$ as:
 $$\sum_{\lambda'=\lambda}^{\lambda_{\text{max}}} \sum_{\lambda=2}^{\lambda} \left[\sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} D_{\mu'\mu}^\lambda(\Omega) - \alpha_{\lambda'\mu'} \right] Y_{\lambda\mu}(\vartheta, \varphi) = 0$$
Invariant Mean-Field Hamiltonian [2]

- In what follows we will need a representation of the operators $\hat{O} \in G$ adapted to the action on spherical harmonics $Y_{\lambda\mu}(\vartheta, \varphi)$.

- The action of proper rotations can be written down as
 $$\hat{O} \rightarrow R(\Omega) \equiv \exp(i\alpha \hat{j}_z + i\beta \hat{j}_y + i\gamma \hat{j}_z').$$

- Using this notation the invariance condition takes the form
 $$\sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} [\hat{O} Y_{\lambda\mu}(\vartheta, \varphi)] = \sum_{\lambda=2}^{\lambda_{\text{max}}} \sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} \sum_{\mu'=-\lambda}^{\lambda} D_{\mu'\mu}^\lambda(\Omega) Y_{\lambda\mu'}(\vartheta, \varphi).$$

- The latter can be written down $\forall \vartheta, \varphi$ as
 $$\sum_{\mu'=-\lambda}^{\lambda} \sum_{\lambda=2}^{\lambda_{\text{max}}} \left[\sum_{\mu=-\lambda}^{\lambda} \alpha_{\lambda\mu} D_{\mu'\mu}^\lambda(\Omega) - \alpha_{\lambda\mu'} \right] Y_{\lambda\mu}(\vartheta, \varphi) = 0.$$
Invariant Mean-Field Hamiltonian [3]

- Spherical harmonics are linearly independent → it then follows

$$\sum_{\mu = -\lambda}^{\lambda} [D^\lambda_{\mu' \mu}(\Omega_k) - \delta_{\mu' \mu}] \alpha^*_\lambda \mu = 0; \quad k = 1, 2, \ldots f.$$

Above Ω_k are fixed sets of Euler angles corresponding to O_k; for instance for a four-fold O_z-axis → $\Omega = \{\pi/2, 0, 0\}$ etc. etc.

- Solutions can be taken as eigen-vectors of the $(2\lambda + 1) \times (2\lambda + 1)$ matrix $D^\lambda_{\mu' \mu}(\Omega_k)$ with the eigen-value equal +1

- The above system of equations is uniform → multiplying the corresponding solutions $\bar{\alpha}_{\lambda \mu}$ by a constant gives again a solution

- This allows to select, e.g. $\bar{\alpha}_{\lambda \mu} = 0$ as an independent parameter, which uniquely fixes all the other non-zero components
Invariant Mean-Field Hamiltonian [3]

- Spherical harmonics are linearly independent → it then follows
 \[
 \sum_{\mu=-\lambda}^{\lambda} \left[D_{\mu'\mu}^\lambda (\Omega_k) - \delta_{\mu\mu'} \right] \alpha_{\lambda\mu}^* = 0; \quad k = 1, 2, \ldots, f.
 \]

Above Ω_k are fixed sets of Euler angles corresponding to O_k; for instance for a four-fold O_z-axis → $\Omega = \{\pi/2, 0, 0\}$ etc. etc.

- Solutions can be taken as eigen-vectors of the $(2\lambda+1) \times (2\lambda+1)$ matrix $D_{\mu'\mu}^\lambda (\Omega_k)$ with the eigen-value equal +1

- The above system of equations is uniform → multiplying the corresponding solutions $\bar{\alpha}_{\lambda\mu}$ by a constant gives again a solution

- This allows to select, e.g. $\bar{\alpha}_{\lambda\mu=0}$ as an independent parameter, which uniquely fixes all the other non-zero components
Spherical harmonics are linearly independent → it then follows

\[
\sum_{\mu=-\lambda}^{\lambda} \left[D_{\mu'\mu}^{\lambda}(\Omega_k) - \delta_{\mu'\mu} \right] \alpha^*_\mu = 0; \quad k = 1, 2, \ldots, f.
\]

Above \(\Omega_k \) are fixed sets of Euler angles corresponding to \(O_k \); for instance for a four-fold \(O_z \)-axis \(\rightarrow \Omega = \{\pi/2, 0, 0\} \) etc. etc.

Solutions can be taken as eigen-vectors of the \((2\lambda + 1) \times (2\lambda + 1)\) matrix \(D_{\mu'\mu}^{\lambda}(\Omega_k) \) with the eigen-value equal +1

The above system of equations is uniform → multiplying the corresponding solutions \(\bar{\alpha}_{\lambda\mu} \) by a constant gives again a solution

This allows to select, e.g. \(\bar{\alpha}_{\lambda\mu=0} \) as an independent parameter, which uniquely fixes all the other non-zero components
Invariant Mean-Field Hamiltonian [3]

- Spherical harmonics are linearly independent → it then follows

\[
\sum_{\mu=-\lambda}^{\lambda} \left[D_{\mu'\mu}^{\lambda}(\Omega_k) - \delta_{\mu\mu'} \right] \alpha_{\lambda\mu}^{*} = 0; \quad k = 1, 2, \ldots, f.
\]

Above \(\Omega_k \) are fixed sets of Euler angles corresponding to \(O_k \); for instance for a four-fold \(O_z \)-axis → \(\Omega = \{ \pi/2, 0, 0 \} \) etc. etc.

- Solutions can be taken as eigen-vectors of the \((2\lambda+1) \times (2\lambda+1)\) matrix \(D_{\mu'\mu}^{\lambda}(\Omega_k) \) with the eigen-value equal +1

- The above system of equations is uniform → multiplying the corresponding solutions \(\bar{\alpha}_{\lambda\mu} \) by a constant gives again a solution

- This allows to select, e.g. \(\bar{\alpha}_{\lambda\mu=0} \) as an independent parameter, which uniquely fixes all the other non-zero components
Spherical harmonics are linearly independent → it then follows

\[
\sum_{\mu=-\lambda}^{\lambda} \left[D_{\mu'\mu}^\lambda(\Omega_k) - \delta_{\mu\mu'} \right] \alpha_{\lambda\mu}^* = 0; \quad k = 1, 2, \ldots f.
\]

Above \(\Omega_k \) are fixed sets of Euler angles corresponding to \(O_k \); for instance for a four-fold \(O_z \)-axis \(\to \Omega = \{\pi/2, 0, 0\} \) etc. etc.

Solutions can be taken as eigen-vectors of the \((2\lambda+1) \times (2\lambda+1) \) matrix \(D_{\mu'\mu}^\lambda(\Omega_k) \) with the eigen-value equal +1

The above system of equations is uniform → multiplying the corresponding solutions \(\bar{\alpha}_{\lambda\mu} \) by a constant gives again a solution

This allows to select, e.g. \(\bar{\alpha}_{\lambda\mu} = 0 \) as an independent parameter, which uniquely fixes all the other non-zero components
A Basis for Tetrahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions:

<table>
<thead>
<tr>
<th>λ</th>
<th>α</th>
<th>Rank ↔ Multipolarity λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>±2</td>
<td>t₃</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>no solution possible</td>
</tr>
<tr>
<td>7</td>
<td>±2</td>
<td>t₇; α₇,±6 ≡ -√\frac{11}{13} \cdot t₇</td>
</tr>
<tr>
<td>9</td>
<td>±2</td>
<td>t₉; α₉,±6 ≡ +√\frac{28}{120} \cdot t₉</td>
</tr>
</tbody>
</table>

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
A Basis for Tetrahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions:

\[
\lambda = 3 : \quad \alpha_{3, \pm 2} \equiv t_3
\]

\[
\lambda = 5 : \quad \text{no solution possible}
\]

\[
\lambda = 7 : \quad \alpha_{7, \pm 2} \equiv t_7; \quad \alpha_{7, \pm 6} \equiv -\sqrt{\frac{11}{13}} \cdot t_7
\]

\[
\lambda = 9 : \quad \alpha_{9, \pm 2} \equiv t_9; \quad \alpha_{9, \pm 6} \equiv +\sqrt{\frac{28}{1998}} \cdot t_9
\]
A Basis for Tetrahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions: Rank ↔ Multipolarity λ

$\lambda = 3 : \quad \alpha_{3,\pm 2} \equiv t_3$

$\lambda = 5 : \quad \text{no solution possible}$

$\lambda = 7 : \quad \alpha_{7,\pm 2} \equiv t_7; \quad \alpha_{7,\pm 6} \equiv -\sqrt{\frac{11}{13}} \cdot t_7$

$\lambda = 9 : \quad \alpha_{9,\pm 2} \equiv t_9; \quad \alpha_{9,\pm 6} \equiv +\sqrt{\frac{28}{198}} \cdot t_9$
A Basis for Tetrahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions:

\[\lambda = 3: \quad \alpha_{3,\pm2} \equiv t_3 \]
\[\lambda = 5: \quad \text{no solution possible} \]
\[\lambda = 7: \quad \alpha_{7,\pm2} \equiv t_7; \quad \alpha_{7,\pm6} \equiv -\sqrt{\frac{11}{13}} \cdot t_7 \]
\[\lambda = 9: \quad \alpha_{9,\pm2} \equiv t_9; \quad \alpha_{9,\pm6} \equiv +\sqrt{\frac{28}{198}} \cdot t_9 \]
Only special combinations of spherical harmonics may form a basis for surfaces with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions: Rank \leftrightarrow Multipolarity λ

$\lambda = 3 : \quad \alpha_{3,\pm 2} \equiv t_3$

$\lambda = 5 : \quad$ no solution possible

$\lambda = 7 : \quad \alpha_{7,\pm 2} \equiv t_7; \quad \alpha_{7,\pm 6} \equiv -\sqrt{\frac{11}{13}} \cdot t_7$

$\lambda = 9 : \quad \alpha_{9,\pm 2} \equiv t_9; \quad \alpha_{9,\pm 6} \equiv +\sqrt{\frac{28}{198}} \cdot t_9$
A Basis for Tetrahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions:

<table>
<thead>
<tr>
<th>Multipolarity λ</th>
<th>Rank</th>
<th>Multipolarity λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 3$</td>
<td>$Q_3, \pm 2 \equiv Q_3$</td>
<td>$\lambda = 5$</td>
</tr>
<tr>
<td>$\lambda = 7$</td>
<td>$Q_7, \pm 2 \equiv Q_7$; $Q_7, \pm 6 \equiv -\sqrt{\frac{11}{13}} \cdot Q_7$</td>
<td>$\lambda = 9$</td>
</tr>
</tbody>
</table>

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Only special combinations of multipole moments may form a basis for nuclei with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions: Rank ↔ Multipolarity λ

- $\lambda = 3 : \quad Q_{3, \pm 2} \equiv Q_3$
- $\lambda = 5 : \quad \text{no solution possible}$
- $\lambda = 7 : \quad Q_{7, \pm 2} \equiv Q_7; \quad Q_{7, \pm 6} \equiv -\sqrt{\frac{11}{13}} \cdot Q_7$
- $\lambda = 9 : \quad Q_{9, \pm 2} \equiv Q_9; \quad Q_{9, \pm 6} \equiv +\sqrt{\frac{28}{198}} \cdot Q_9$
A Basis for Tetrahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions:

Rank ↔ Multipolarity λ

$\lambda = 3 : \quad Q_{3,\pm 2} \equiv Q_3$

$\lambda = 5 : \quad $ no solution possible

$\lambda = 7 : \quad Q_{7,\pm 2} \equiv Q_7; \quad Q_{7,\pm 6} \equiv -\sqrt{\frac{11}{13}} \cdot Q_7$

$\lambda = 9 : \quad Q_{9,\pm 2} \equiv Q_9; \quad Q_{9,\pm 6} \equiv +\sqrt{\frac{28}{198}} \cdot Q_9$
A Basis for Tetrahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with tetrahedral symmetry and only odd-order:

<table>
<thead>
<tr>
<th>Three Lowest Order Solutions:</th>
<th>Rank ↔ Multipolarity λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 3:$ $Q_{3,\pm 2} \equiv Q_3$</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 5:$ no solution possible</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 7:$ $Q_{7,\pm 2} \equiv Q_7;$ $Q_{7,\pm 6} \equiv -\sqrt{11/13} \cdot Q_7$</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 9:$ $Q_{9,\pm 2} \equiv Q_9;$ $Q_{9,\pm 6} \equiv +\sqrt{28/198} \cdot Q_9$</td>
<td></td>
</tr>
</tbody>
</table>
A Basis for Tetrahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with tetrahedral symmetry and only odd-order:

Three Lowest Order Solutions:

\[
\begin{align*}
\lambda &= 3 : & Q_3, \pm 2 & \equiv Q_3 \\
\lambda &= 5 : & \text{no solution possible} \\
\lambda &= 7 : & Q_7, \pm 2 & \equiv Q_7; & Q_7, \pm 6 & \equiv -\sqrt{\frac{11}{13}} \cdot Q_7 \\
\lambda &= 9 : & Q_9, \pm 2 & \equiv Q_9; & Q_9, \pm 6 & \equiv +\sqrt{\frac{28}{198}} \cdot Q_9
\end{align*}
\]
Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the tetrahedral group denoted T_d.

A tetrahedron has four equal walls. Its shape is invariant with respect to 24 symmetry elements. Tetrahedron is not invariant with respect to the inversion. Of course nuclei cannot be represented by a sharp-edge pyramid... but rather in a form of a regular spherical harmonic expansion:

$$\mathcal{R}(\vartheta, \varphi) = R_0 \left\{ 1 + \alpha_{3+2} (Y_{3+2} + Y_{3-2}) + \alpha_{72} \left[(Y_{7+2} + Y_{7-2}) - \sqrt{\frac{11}{13}} (Y_{7+6} + Y_{7-6}) \right] \right\}$$

one parameter 3rd order

one parameter 7th order
A Basis for Octahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry and only in even-orders:

Three Lowest Order Solutions:

- \(\lambda = 4 \): \(\alpha_{40} \equiv o_4; \quad \alpha_{4,\pm4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_4 \)
- \(\lambda = 6 \): \(\alpha_{60} \equiv o_6; \quad \alpha_{6,\pm4} \equiv -\sqrt{\frac{7}{2}} \cdot o_6 \)
- \(\lambda = 8 \): \(\alpha_{80} \equiv o_8; \quad \alpha_{8,\pm4} \equiv \sqrt{\frac{28}{198}} \cdot o_8; \quad \alpha_{8,\pm8} \equiv \sqrt{\frac{65}{198}} \cdot o_8 \)
A Basis for Octahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry and only in even-orders:

Three Lowest Order Solutions:

- For $\lambda = 4$:
 \[\alpha_{40} \equiv 0_4; \quad \alpha_{4,\pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot 0_4 \]

- For $\lambda = 6$:
 \[\alpha_{60} \equiv 0_6; \quad \alpha_{6,\pm 4} \equiv -\sqrt{\frac{7}{2}} \cdot 0_6 \]

- For $\lambda = 8$:
 \[\alpha_{80} \equiv 0_8; \quad \alpha_{8,\pm 4} \equiv \sqrt{\frac{28}{198}} \cdot 0_8; \quad \alpha_{8,\pm 8} \equiv \sqrt{\frac{65}{198}} \cdot 0_8 \]
A Basis for Octahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry and only in even-orders:

<table>
<thead>
<tr>
<th>Three Lowest Order Solutions:</th>
<th>Rank ↔ Multipolarity λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 4$: $\alpha_{40} \equiv o_4$; $\alpha_{4,\pm4} \equiv \pm \sqrt{\frac{5}{14}} \cdot o_4$</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 6$: $\alpha_{60} \equiv o_6$; $\alpha_{6,\pm4} \equiv -\sqrt{\frac{7}{2}} \cdot o_6$</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 8$: $\alpha_{80} \equiv o_8$; $\alpha_{8,\pm4} \equiv \sqrt{\frac{28}{198}} \cdot o_8$; $\alpha_{8,\pm8} \equiv \sqrt{\frac{65}{198}} \cdot o_8$</td>
<td></td>
</tr>
</tbody>
</table>
A Basis for Octahedral Symmetry: Phenomenological

Only special combinations of spherical harmonics may form a basis for surfaces with octahedral symmetry and only in even-orders:

<table>
<thead>
<tr>
<th>Rank ↔ Multipolarity λ</th>
<th>Three Lowest Order Solutions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 4$</td>
<td>$\alpha_{40} \equiv \mathbf{o}4$; $\alpha{4,\pm4} \equiv \pm \sqrt{\frac{5}{14}} \cdot \mathbf{o}_4$</td>
</tr>
<tr>
<td>$\lambda = 6$</td>
<td>$\alpha_{60} \equiv \mathbf{o}6$; $\alpha{6,\pm4} \equiv -\sqrt{\frac{7}{2}} \cdot \mathbf{o}_6$</td>
</tr>
<tr>
<td>$\lambda = 8$</td>
<td>$\alpha_{80} \equiv \mathbf{o}8$; $\alpha{8,\pm4} \equiv \sqrt{\frac{28}{198}} \cdot \mathbf{o}8$; $\alpha{8,\pm8} \equiv \sqrt{\frac{65}{198}} \cdot \mathbf{o}_8$</td>
</tr>
</tbody>
</table>
A Basis for Octahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with octahedral symmetry and only in even-orders:

<table>
<thead>
<tr>
<th>Rank ↔ Multipolarity λ</th>
<th>Three Lowest Order Solutions:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda = 4 : \quad Q_{40} \equiv Q_4; \quad Q_{4,\pm4} \equiv \pm \sqrt{\frac{5}{14}} \cdot Q_4$</td>
<td>$\lambda = 6 : \quad Q_{60} \equiv Q_6; \quad Q_{6,\pm4} \equiv -\sqrt{\frac{7}{2}} \cdot Q_6$</td>
<td></td>
</tr>
<tr>
<td>$\lambda = 8 : \quad Q_{80} \equiv Q_8; \quad Q_{8,\pm4} \equiv \sqrt{\frac{28}{198}} \cdot Q_8; \quad Q_{8,\pm8} \equiv \sqrt{\frac{65}{198}} \cdot Q_8$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Basis for Octahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with octahedral symmetry and only in even-orders:

Three Lowest Order Solutions: Rank \leftrightarrow Multipolarity λ

$\lambda = 4 : \quad Q_{40} \equiv Q_4; \quad Q_{4,\pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot Q_4$

$\lambda = 6 : \quad Q_{60} \equiv Q_6; \quad Q_{6,\pm 4} \equiv -\sqrt{\frac{7}{2}} \cdot Q_6$

$\lambda = 8 : \quad Q_{80} \equiv Q_8; \quad Q_{8,\pm 4} \equiv \sqrt{\frac{28}{198}} \cdot Q_8; \quad Q_{8,\pm 8} \equiv \sqrt{\frac{65}{198}} \cdot Q_8$
A Basis for Octahedral Symmetry: Constrained HF

Only special combinations of multipole moments may form a basis for nuclei with octahedral symmetry and only in even-orders:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Multipolarity λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>$Q_{40} \equiv Q_4$; $Q_{4,\pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot Q_4$</td>
</tr>
<tr>
<td>6</td>
<td>$Q_{60} \equiv Q_6$; $Q_{6,\pm 4} \equiv -\sqrt{\frac{7}{2}} \cdot Q_6$</td>
</tr>
<tr>
<td>8</td>
<td>$Q_{80} \equiv Q_8$; $Q_{8,\pm 4} \equiv \sqrt{\frac{28}{198}} \cdot Q_8$; $Q_{8,\pm 8} \equiv \sqrt{\frac{65}{198}} \cdot Q_8$</td>
</tr>
</tbody>
</table>

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Only special combinations of multipole moments may form a basis for nuclei with octahedral symmetry and only in even-orders:

Three Lowest Order Solutions:

- **$\lambda = 4$:** $Q_{40} \equiv Q_4; \quad Q_{4,\pm 4} \equiv \pm \sqrt{\frac{5}{14}} \cdot Q_4$
- **$\lambda = 6$:** $Q_{60} \equiv Q_6; \quad Q_{6,\pm 4} \equiv -\sqrt{\frac{7}{2}} \cdot Q_6$
- **$\lambda = 8$:** $Q_{80} \equiv Q_8; \quad Q_{8,\pm 4} \equiv \sqrt{\frac{28}{198}} \cdot Q_8; \quad Q_{8,\pm 8} \equiv \sqrt{\frac{65}{198}} \cdot Q_8$
Introducing Nuclear Octahedral Symmetry

Let us recall one of the magic forms introduced long time by Plato. The implied symmetry leads to the *octahedral group* denoted O_h.

An octahedron has 8 equal walls. Its shape is invariant with respect to 48 symmetry elements that include inversion. However, the nuclear surface cannot be represented in the form of a diamond $→→→→→→→→$ but rather in a form of a regular spherical harmonic expansion:

$$R(\theta, \varphi) = R_0 \left\{ 11 + \alpha_{40} \left[Y_{40} + \sqrt{\frac{5}{14}} (Y_{4+4} + Y_{4-4}) \right] + \alpha_{60} \left[Y_{60} - \sqrt{\frac{7}{2}} (Y_{6+4} + Y_{6-4}) \right] \right\}$$

one parameter 4th order

$→→→→→→→→$

one parameter 6th order

Jerzy DUDEK, University of Strasbourg, France
New Theory: Verification, Relation to Experiment

Specific Point-Group Symmetry Realisations (Order λ)

Example: Octahedral Symmetry - Proton Spectra

Double group O^D_h has four 2-dimensional and two 4-dimensional irreducible representations \rightarrow six distinct families of levels

Figure: Full lines correspond to 4-dimensional irreducible representations - they are marked with double Nilsson labels. Observe huge gap at $Z=70$.

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Example: Octahedral Symmetry - Neutron Spectra

Double group O^D_h has four 2-dimensional and two 4-dimensional irreducible representations → six distinct families of levels.

Figure: Full lines correspond to 4-dimensional irreducible representations - they are marked with double Nilsson labels. Observe huge gap at $N=114$.

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Example: Results with the HFB Solutions in RE

The HFB results for tetrahedral solutions in light Rare-Earth nuclei

\[\alpha_{4,0} \equiv o_4, \quad \alpha_{4,\pm 4} \equiv -\sqrt{\frac{5}{14}} o_4 \]

<table>
<thead>
<tr>
<th>Z</th>
<th>N</th>
<th>ΔE (MeV)</th>
<th>Q_{32} ($b^{3/2}$)</th>
<th>Q_{40} (b^2)</th>
<th>Q_{44} (b^2)</th>
<th>$Q_{40} \times \sqrt{\frac{5}{14}}$ (b^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>86</td>
<td>-1.387</td>
<td>0.941817</td>
<td>-0.227371</td>
<td>+0.135878</td>
<td>-0.135880</td>
</tr>
<tr>
<td>64</td>
<td>90</td>
<td>-3.413</td>
<td>1.394656</td>
<td>-0.428250</td>
<td>+0.255929</td>
<td>-0.255928</td>
</tr>
<tr>
<td>64</td>
<td>92</td>
<td>-3.972</td>
<td>0.000000</td>
<td>-0.447215</td>
<td>+0.267263</td>
<td>-0.267262</td>
</tr>
<tr>
<td>62</td>
<td>86</td>
<td>-0.125</td>
<td>0.487392</td>
<td>-0.086941</td>
<td>+0.051954</td>
<td>-0.051957</td>
</tr>
<tr>
<td>62</td>
<td>88</td>
<td>-0.524</td>
<td>0.812103</td>
<td>-0.218809</td>
<td>+0.130760</td>
<td>-0.130763</td>
</tr>
<tr>
<td>62</td>
<td>90</td>
<td>-1.168</td>
<td>1.206017</td>
<td>-0.380334</td>
<td>+0.227293</td>
<td>-0.227293</td>
</tr>
</tbody>
</table>
New Theory: Verification, Relation to Experiment

Mean-Fields Invariant under a Group of Symmetry
Specific Point-Group Symmetry Realisations (Order λ)

Example: Results with the HFB Solutions in RE

The HFB results for tetrahedral solutions in light Rare-Earth nuclei

\[\alpha_{4,0} \equiv o_4, \quad \alpha_{4,\pm 4} \equiv -\sqrt{5/14} o_4 \]

<table>
<thead>
<tr>
<th>Z</th>
<th>N</th>
<th>ΔE (MeV)</th>
<th>Q_{32} ($b^{3/2}$)</th>
<th>Q_{40} (b^2)</th>
<th>Q_{44} (b^2)</th>
<th>$Q_{40} \times \sqrt{5/14}$ (b^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>86</td>
<td>-1.387</td>
<td>0.941817</td>
<td>-0.227371</td>
<td>$+0.135878$</td>
<td>-0.135880</td>
</tr>
<tr>
<td>64</td>
<td>90</td>
<td>-3.413</td>
<td>1.394656</td>
<td>-0.428250</td>
<td>$+0.255929$</td>
<td>-0.255928</td>
</tr>
<tr>
<td>64</td>
<td>92</td>
<td>-3.972</td>
<td>0.000000</td>
<td>-0.447215</td>
<td>$+0.267263$</td>
<td>-0.267262</td>
</tr>
<tr>
<td>62</td>
<td>86</td>
<td>-0.125</td>
<td>0.487392</td>
<td>-0.086941</td>
<td>$+0.051954$</td>
<td>-0.051957</td>
</tr>
<tr>
<td>62</td>
<td>88</td>
<td>-0.524</td>
<td>0.812103</td>
<td>-0.218809</td>
<td>$+0.130760$</td>
<td>-0.130763</td>
</tr>
<tr>
<td>62</td>
<td>90</td>
<td>-1.168</td>
<td>1.206017</td>
<td>-0.380334</td>
<td>$+0.227293$</td>
<td>-0.227293</td>
</tr>
</tbody>
</table>

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Example: Results with the HFB Solutions in Actinide

The HFB results for tetrahedral solutions in the Actinide nuclei

\[\alpha_{4,0} \equiv o_4, \quad \alpha_{4,\pm4} \equiv -\sqrt{5/14} o_4 \]

\[\alpha_{6,0} \equiv o_6, \quad \alpha_{6,\pm4} \equiv +\sqrt{7/2} o_6 \]

Table: Octahedral deformations of the second order compatible with tetrahedral deformation in \(^{226}\)Th with two Skyrme parameterisations.

<table>
<thead>
<tr>
<th>Force</th>
<th>(Q_{32})</th>
<th>(Q_{40}\sqrt{5/14})</th>
<th>(Q_{44})</th>
<th>(Q_{60}\sqrt{7/2})</th>
<th>(Q_{64})</th>
</tr>
</thead>
<tbody>
<tr>
<td>SkM*</td>
<td>3.4166</td>
<td>0.5582</td>
<td>0.5583</td>
<td>0.1537</td>
<td>0.1538</td>
</tr>
<tr>
<td>SLy4</td>
<td>3.3353</td>
<td>0.5471</td>
<td>0.5617</td>
<td>0.1306</td>
<td>0.1341</td>
</tr>
</tbody>
</table>
New Theory: Verification, Relation to Experiment

Mean-Fields Invariant under a Group of Symmetry
Specific Point-Group Symmetry Realisations (Order λ)

Example: Results with the HFB Solutions in Actinide

The HFB results for tetrahedral solutions in the Actinide nuclei

\[\alpha_{4,0} \equiv o_4, \quad \alpha_{4,\pm 4} \equiv -\sqrt{5/14} o_4 \]

\[\alpha_{6,0} \equiv o_6, \quad \alpha_{6,\pm 4} \equiv +\sqrt{7/2} o_6 \]

Table: Octahedral deformations of the second order compatible with tetrahedral deformation in 226Th with two Skyrme parameterisations.

<table>
<thead>
<tr>
<th>Force</th>
<th>Q_{32}</th>
<th>$Q_{40} \sqrt{5/14}$</th>
<th>Q_{44}</th>
<th>$Q_{60} \sqrt{7/2}$</th>
<th>Q_{64}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SkM*</td>
<td>3.4166</td>
<td>0.5582</td>
<td>0.5583</td>
<td>0.1537</td>
<td>0.1538</td>
</tr>
<tr>
<td>SLy4</td>
<td>3.3353</td>
<td>0.5471</td>
<td>0.5617</td>
<td>0.1306</td>
<td>0.1341</td>
</tr>
</tbody>
</table>
Group Theory and Geometry for Historians

- The symbol of 'beauty in symmetry' are five Platonic Figures
- There exist only five regular convex (=platonic) polyhedra: tetrahedron, cube, octahedron, icosahedron & dodecahedron
- As it seems, neolithic people from Scotland have developed the five Platonic solids about 1000-3000 years before Plato (stone models in Ashmolean Museum, Oxford) ... in religious context
- In what follows we stick to the aspect of beauty and nuclear reality - similarity to any other context will be purely accidental
Group Theory and Geometry for Historians

- The symbol of 'beauty in symmetry' are five Platonic Figures

- There exist only five regular convex (=platonic) polyhedra: \textit{tetrahedron, cube, octahedron, icosahedron \& dodecahedron}

- \textit{As it seems, neolithic people from Scotland have developed the five Platonic solids about 1000-3000 years before Plato (stone models in Ashmolean Museum, Oxford) ... in religious context}

- In what follows we stick to the aspect of beauty and nuclear reality - similarity to any other context will be purely accidental
Group Theory and Geometry for Historians

- The symbol of ‘beauty in symmetry’ are five Platonic Figures

- There exist only five regular convex (=platonic) polyhedra: tetrahedron, cube, octahedron, icosahedron & dodecahedron

- As it seems, neolithic people from Scotland have developed the five Platonic solids about 1000-3000 years before Plato (stone models in Ashmolean Museum, Oxford) ... in religious context

- In what follows we stick to the aspect of beauty and nuclear reality - similarity to any other context will be purely accidental
Part IV

Predictions and the Experimental Verification
Multipole Moments as Functionals of the Density

- Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma : \quad R(\vartheta, \varphi) = R_0 \left[1 + \sum \lambda \sum \mu \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi)\right]$$

- Given uniform density $\rho_{\Sigma}(\vec{r})$ defined using the surface Σ

$$\rho_{\Sigma}(\vec{r}) = \begin{cases}
\rho_0 & : \quad \vec{r} \in \Sigma \\
0 & : \quad \vec{r} \notin \Sigma
\end{cases}$$

- Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^\lambda Y_{\lambda\mu} \, d^3\vec{r}$$

- We will calculate the quadrupole moments as functions of $\alpha_{3\mu}$
Multipole Moments as Functionals of the Density

- Nuclear surface Σ is defined in terms of multipole deformations:

$$\Sigma : \quad R(\vartheta, \varphi) = R_0 \left[1 + \sum_\lambda \sum_\mu \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi) \right]$$

- Given uniform density $\rho_{\Sigma}(\vec{r})$ defined using the surface Σ

$$\rho_{\Sigma}(\vec{r}) = \begin{cases}
\rho_0 & : \vec{r} \in \Sigma \\
0 & : \vec{r} \notin \Sigma
\end{cases}$$

- Express the multipole moments as usual by

$$Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^\lambda Y_{\lambda\mu} \, d^3\vec{r}$$

- We will calculate the quadrupole moments as functions of $\alpha_{3\mu}$
Multipole Moments as Functionals of the Density

- Nuclear surface Σ is defined in terms of multipole deformations:
 \[
 \Sigma : \quad R(\vartheta, \varphi) = R_0 \left[1 + \sum_\lambda \sum_\mu \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi) \right]
 \]

- Given uniform density $\rho_\Sigma(\vec{r})$ defined using the surface Σ
 \[
 \rho_\Sigma(\vec{r}) = \begin{cases}
 \rho_0 : & \vec{r} \in \Sigma \\
 0 : & \vec{r} \notin \Sigma
 \end{cases}
 \]

- Express the multipole moments as usual by
 \[
 Q_{\lambda\mu} = \int \rho_\Sigma(\vec{r}) r^\lambda Y_{\lambda\mu} d^3\vec{r}
 \]

- We will calculate the quadrupole moments as functions of $\alpha_{3\mu}$
Multipole Moments as Functionals of the Density

- Nuclear surface Σ is defined in terms of multipole deformations:
 \[\Sigma : \quad R(\vartheta, \varphi) = R_0 \left[1 + \sum_\lambda \sum_\mu \alpha_{\lambda\mu} Y_{\lambda\mu}(\vartheta, \varphi) \right] \]

- Given uniform density $\rho(\vec{r})$ defined using the surface Σ:
 \[\rho_{\Sigma}(\vec{r}) = \begin{cases}
 \rho_0 & : \quad \vec{r} \in \Sigma \\
 0 & : \quad \vec{r} \notin \Sigma
\end{cases} \]

- Express the multipole moments as usual by:
 \[Q_{\lambda\mu} = \int \rho_{\Sigma}(\vec{r}) r^\lambda Y_{\lambda\mu} d^3\vec{r} \]

- We will calculate the quadrupole moments as functions of $\alpha_{3\mu}$.
Multipole Moments as Functionals of the Density

For small deformations we use Taylor expansion:

\[Q_{\lambda\mu}(\alpha) \approx Q_{\lambda\mu}\bigg|_{\alpha=0} + Q_{\lambda\mu}'\bigg|_{\alpha=0} \Delta \alpha + \frac{1}{2} Q_{\lambda\mu}''\bigg|_{\alpha=0} \Delta \alpha \Delta \alpha \]

We set \(\lambda = 2, \mu = 0 \) and \(\lambda_1 = \lambda_2 = 3 \) and obtain

\[\alpha_{30} : \quad Q_{20} = \frac{15}{2\sqrt{5\pi}} \cdot \alpha_{30}^2 \cdot \rho_0 R_0^5 \]
\[\alpha_{31} : \quad Q_{20} = \frac{15}{4\sqrt{5\pi}} \cdot \alpha_{3+1} \alpha_{3-1} \cdot \rho_0 R_0^5 \]
\[\alpha_{32} : \quad Q_{20} = 0 \]
\[\alpha_{33} : \quad Q_{20} = \frac{125}{12\sqrt{5\pi}} \cdot \alpha_{3+3} \alpha_{3-3} \cdot \rho_0 R_0^5 \]

Conclusion: Among \(\lambda = 3 \) def. only \(\alpha_{32} \) leads to \(Q_2 \equiv 0 \) !!!
Multipole Moments as Functionals of the Density

- For small deformations we use Taylor expansion:

\[
Q_{\lambda\mu}(\alpha) \approx Q_{\lambda\mu}\bigg|_{\alpha=0} + Q'_{\lambda\mu}\bigg|_{\alpha=0} \Delta\alpha + \frac{1}{2} Q''_{\lambda\mu}\bigg|_{\alpha=0} \Delta\alpha \Delta\alpha
\]

- We set \(\lambda = 2\), \(\mu = 0\) and \(\lambda_1 = \lambda_2 = 3\) and obtain

\[
\begin{align*}
\alpha_{30} : & \quad Q_{20} = 15/(2\sqrt{5\pi}) \cdot \alpha_{30}^2 \cdot \rho_0 R_0^5 \\
\alpha_{31} : & \quad Q_{20} = 15/(4\sqrt{5\pi}) \cdot \alpha_{3+1} \alpha_{3-1} \cdot \rho_0 R_0^5 \\
\alpha_{32} : & \quad Q_{20} = 0 \\
\alpha_{33} : & \quad Q_{20} = 125/(12\sqrt{5\pi}) \cdot \alpha_{3+3} \alpha_{3-3} \cdot \rho_0 R_0^5
\end{align*}
\]

- **Conclusion:** Among \(\lambda = 3\) def. only \(\alpha_{32}\) leads to \(Q_2 \equiv 0\) !!!
Rotational Bands without Electric E2 Transitions
Experiments and TetraNuc Collaboration

Multipole Moments as Functionals of the Density

- For small deformations we use Taylor expansion:

$$Q_{\lambda\mu}(\alpha) \approx Q_{\lambda\mu}\bigg|_{\alpha=0} + Q'_{\lambda\mu}\bigg|_{\alpha=0} \Delta \alpha + \frac{1}{2} Q''_{\lambda\mu}\bigg|_{\alpha=0} \Delta \alpha \Delta \alpha$$

- We set $\lambda = 2$, $\mu = 0$ and $\lambda_1 = \lambda_2 = 3$ and obtain

\[
\begin{align*}
\alpha_{30} : & \quad Q_{20} = \frac{15}{2\sqrt{5\pi}} \cdot \alpha_{30}^2 \cdot \rho_0 R_0^5 \\
\alpha_{31} : & \quad Q_{20} = \frac{15}{4\sqrt{5\pi}} \cdot \alpha_{3+1} \alpha_{3-1} \cdot \rho_0 R_0^5 \\
\alpha_{32} : & \quad Q_{20} = 0 \\
\alpha_{33} : & \quad Q_{20} = \frac{125}{12\sqrt{5\pi}} \cdot \alpha_{3+3} \alpha_{3-3} \cdot \rho_0 R_0^5
\end{align*}
\]

- **Conclusion:** Among $\lambda = 3$ defs. only α_{32} leads to $Q_2 \equiv 0$!!!
Similar Results with the Microscopic Hamiltonian

Microscopic Multipole Moments: \[Q_{20}(\alpha_{3\mu}) = \int \psi^*(\tau) \hat{Q}_{20} \psi(\tau) d\tau \]

Observe that \(Q_{20}(\alpha_{32}) \) vanishes identically in the micro case as well.
Octupole Shapes and Point-Groups

• Each of 4 octupole parameters $\alpha_{3\mu}$ defines a family of surfaces
• Each surface has certain symmetry (i.e. invariance) properties
• Those symmetry properties define the corresponding groups:

<table>
<thead>
<tr>
<th>$\alpha_{3\mu}$</th>
<th>Group</th>
<th>No of Irreps</th>
<th>Irrep Dims.</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{30}</td>
<td>C^D_{∞}</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>α_{31}</td>
<td>C^D_{2v}</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>α_{32}</td>
<td>T^D_d</td>
<td>3</td>
<td>2, 2, 4</td>
</tr>
<tr>
<td>α_{33}</td>
<td>C^D_{3v}</td>
<td>’2’</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

• Each surface must be invariant under all group operations

Jerzy DUDEK, University of Strasbourg, France
Octupole Shapes and Point-Groups

- Each of 4 octupole parameters $\alpha_{3\mu}$ defines a family of surfaces.
- Each surface has certain symmetry (i.e. invariance) properties.
- Those symmetry properties define the corresponding groups:

<table>
<thead>
<tr>
<th>$\alpha_{3\mu}$</th>
<th>Group</th>
<th>No of Irreps</th>
<th>Irrep Dims.</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{30}</td>
<td>C^D_∞</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>α_{31}</td>
<td>C^D_{2v}</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>α_{32}</td>
<td>T^D_d</td>
<td>3</td>
<td>2, 2, 4</td>
</tr>
<tr>
<td>α_{33}</td>
<td>C^D_{3v}</td>
<td>'2'</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- Each surface must be invariant under all group operations.

Jerzy DUDEK, University of Strasbourg, France
Symmetries and Nuclear Stability: Examples of Projects
Octupole Shapes and Point-Groups

- Each of 4 octupole parameters $\alpha_{3\mu}$ defines a family of surfaces
- Each surface has certain symmetry (i.e. invariance) properties
- Those symmetry properties define the corresponding groups:

<table>
<thead>
<tr>
<th>$\alpha_{3\mu}$</th>
<th>Group</th>
<th>No of Irreps</th>
<th>Irrep Dims.</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_{30}</td>
<td>C^D_{∞}</td>
<td>∞</td>
<td>2</td>
</tr>
<tr>
<td>α_{31}</td>
<td>C^D_{2v}</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>α_{32}</td>
<td>T^D_d</td>
<td>3</td>
<td>2, 2, 4</td>
</tr>
<tr>
<td>α_{33}</td>
<td>C^D_{3v}</td>
<td>'2'</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- Each surface must be invariant under all group operations

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
Octupole Shapes and Point-Groups

- Each of 4 octupole parameters \(\alpha_{3\mu} \) defines a family of surfaces.
- Each surface has certain symmetry (i.e. invariance) properties.
- Those symmetry properties define the corresponding groups:

<table>
<thead>
<tr>
<th>(\alpha_{3\mu})</th>
<th>Group</th>
<th>No of Irreps</th>
<th>Irrep Dims.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{30})</td>
<td>(C_\infty^D)</td>
<td>(\infty)</td>
<td>2</td>
</tr>
<tr>
<td>(\alpha_{31})</td>
<td>(C_{2v}^D)</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>(\alpha_{32})</td>
<td>(T_d^D)</td>
<td>3</td>
<td>2, 2, 4</td>
</tr>
<tr>
<td>(\alpha_{33})</td>
<td>(C_{3v}^D)</td>
<td>'2'</td>
<td>2, 2</td>
</tr>
</tbody>
</table>

- Each surface must be invariant under all group operations.
We Have the Smoking-Gun Signatures Almost There

Valence particles cause a certain quadrupole polarisation

Additional polarisation caused by Coriolis spin alignments

Spin-alignment will cause additional quadrupole polarisation

Jerzy DUDEK, University of Strasbourg, France
We can now formulate further experimental criteria!

The Story of the ‘Smoking Guns’

- Tetrahedral nuclei are deformed → they produce collective rotation
- The lowest order T_d–symmetry is $Y_{3\pm 2}$ → negative parity bands
- At the exact symmetry limit Q_2 moments must vanish! Therefore:
- There must exist negative-parity bands without E2 transitions !!!

We suggest looking for the collective negative parity bands without ‘rotational’ (E2) transitions. The question – Where?
We can now formulate further experimental criteria!

The Story of the ‘Smoking Guns’

- Tetrahedral nuclei are deformed → they produce collective rotation
- The lowest order T_d symmetry is $Y_{3\pm 2} \rightarrow$ negative parity bands
- At the exact symmetry limit Q_2 moments must vanish! Therefore:
- There must exist negative-parity bands without E2 transitions !!!

We suggest looking for the collective negative parity bands without ‘rotational’ (E2) transitions. The question — Where?
We can now formulate further experimental criteria!

The Story of the ‘Smoking Guns’

- Tetrahedral nuclei are deformed → they produce collective rotation
- The lowest order T_d-symmetry is $Y_{3\pm2} \rightarrow$ negative parity bands
- At the exact symmetry limit Q_2 moments must vanish! Therefore:
 - There must exist negative-parity bands without E2 transitions !!!

We suggest looking for the collective negative parity bands without ‘rotational’ (E2) transitions. The question — Where?
We can now formulate further experimental criteria!

The Story of the ‘Smoking Guns’

- Tetrahedral nuclei are deformed → they produce collective rotation
- The lowest order T_d symmetry is $Y_{3\pm 2} →$ negative parity bands
- At the exact symmetry limit Q_2 moments must vanish! Therefore:
- There must exist negative-parity bands without E2 transitions !!!

We suggest looking for the collective negative parity bands without ‘rotational’ (E2) transitions. The question — Where?
First Goal: Obtain Tetrahedral Magic Numbers ...

1. After inspecting many single-particle diagrams in function of tetrahedral deformation we read-out all the magic numbers.

2. The tetrahedral symmetric nuclei are predicted to be particularly stable around magic closures:

\[\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 136\} \]

3. ... and more precisely around the following nuclei:

\[^{64}_{32} \text{Ge}_{32}, \quad ^{72}_{32} \text{Ge}_{40}, \quad ^{88}_{32} \text{Ge}_{56}, \quad ^{80}_{40} \text{Zr}_{40}, \quad ^{110}_{40} \text{Zr}_{70}, \quad ^{112}_{56} \text{Ba}_{56}, \]

\[^{126}_{56} \text{Ba}_{70}, \quad ^{146}_{56} \text{Ba}_{90}, \quad ^{134}_{64} \text{Gd}_{70}, \quad ^{154}_{64} \text{Gd}_{90}, \quad ^{160}_{70} \text{Yb}_{90}, \quad ^{226}_{90} \text{Th}_{136} \]
First Goal: Obtain Tetrahedral Magic Numbers ...

1. After inspecting many single-particle diagrams in function of tetrahedral deformation we read-out all the magic numbers

2. The tetrahedral symmetric nuclei are predicted to be particularly stable around magic closures:

\[\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 136\} \]

3. ... and more precisely around the following nuclei:

\[^{64}_{32} \text{Ge}_{32}, \; ^{72}_{32} \text{Ge}_{40}, \; ^{88}_{32} \text{Ge}_{56}, \; ^{80}_{40} \text{Zr}_{40}, \; ^{110}_{40} \text{Zr}_{70}, \; ^{112}_{56} \text{Ba}_{56}, \]

\[^{126}_{56} \text{Ba}_{70}, \; ^{146}_{56} \text{Ba}_{90}, \; ^{134}_{64} \text{Gd}_{70}, \; ^{154}_{64} \text{Gd}_{90}, \; ^{160}_{70} \text{Yb}_{90}, \; ^{226}_{90} \text{Th}_{136} \]
First Goal: Obtain Tetrahedral Magic Numbers ...

1. After inspecting many single-particle diagrams in function of tetrahedral deformation we read-out all the magic numbers.

2. The tetrahedral symmetric nuclei are predicted to be particularly stable around magic closures:

$$\{Z_t, N_t\} = \{32, 40, 56, 64, 70, 90, 136\}$$

3. ... and more precisely around the following nuclei:

$$\frac{64}{32}Ge_{32}, \frac{72}{32}Ge_{40}, \frac{88}{32}Ge_{56}, \frac{80}{40}Zr_{40}, \frac{110}{40}Zr_{70}, \frac{112}{56}Ba_{56},$$

$$\frac{126}{56}Ba_{70}, \frac{146}{56}Ba_{90}, \frac{134}{64}Gd_{70}, \frac{154}{64}Gd_{90}, \frac{160}{70}Yb_{90}, \frac{226}{90}Th_{136}$$
Tetrahedral Stability; Tetrahedral Magic Numbers

Tetrahedral Symmetry Induced Magic Numbers

- N = 40
- N = 56
- N = 70
- N = 112
- N = 136
- Z = 40
- Z = 56
- Z = 64
- Z = 70
- Z = 90

Jerzy DUDEK, University of Strasbourg, France
Tetrahedral Stability; Tetrahedral Magic Numbers

Tetrahedral Symmetry Induced Magic Numbers

- N ≤ 90
- N = 70
- N = 56
- N = 40
- Z = 90
- Z = 70
- Z = 64
- Z = 56
- Z = 40

Proton Number
Neutron Number

Jerzy DUDEK, University of Strasbourg, France
Symmetries and Nuclear Stability: Examples of Projects
Partial Decay of 156Gd and Vanishing Q_2-Moments

From $I^\pi = 9^-$ down - no E2-transitions are observed despite tries

<table>
<thead>
<tr>
<th>Process</th>
<th>Refs</th>
<th>Last Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>156EU B- DECAY</td>
<td>43</td>
<td>1995</td>
</tr>
<tr>
<td>156TB EC DECAY</td>
<td>38</td>
<td>1995</td>
</tr>
<tr>
<td>150ND(13C,A3NG)</td>
<td>2</td>
<td>2001</td>
</tr>
<tr>
<td>154SM(A,2NG)</td>
<td>11</td>
<td>2001</td>
</tr>
<tr>
<td>154GD(T,P)</td>
<td>1</td>
<td>1989</td>
</tr>
<tr>
<td>155GD(N,G)</td>
<td>40</td>
<td>2000</td>
</tr>
<tr>
<td>155GD(D,P)</td>
<td>2</td>
<td>1994</td>
</tr>
<tr>
<td>156GD(G,G'),(E,E')</td>
<td>27</td>
<td>2000</td>
</tr>
<tr>
<td>156GD(MU,G)</td>
<td>1</td>
<td>1971</td>
</tr>
<tr>
<td>156GD(N,N')</td>
<td>3</td>
<td>1996</td>
</tr>
<tr>
<td>156GD(P,P'),(D,D')</td>
<td>5</td>
<td>1989</td>
</tr>
<tr>
<td>COULOMB EXCITATION</td>
<td>25</td>
<td>1993</td>
</tr>
<tr>
<td>157GD(P,D),(3HE,A)</td>
<td>2</td>
<td>1984</td>
</tr>
<tr>
<td>157GD(D,T)</td>
<td>1</td>
<td>1993</td>
</tr>
<tr>
<td>158GD(P,T)</td>
<td>8</td>
<td>1982</td>
</tr>
</tbody>
</table>

According to C. W. Reich, *Nucl. Data Sheets* **99** 753 (2003) a few dozens among those refs have been used to deduce the level scheme on the left...
Tetrahedral/Octahedral Shapes Have No Q_2-Moments

At the exact tetrahedral symmetry the quadrupole moments vanish

Equilibrium shape $t_1 = 0.15$

...but, $E2$-intensities are expected to grow with spin (Coriolis polarisation)
More Negative-Parity Bands with No Q$_2$-Moments

Despite numerous tries nobody has ever succeed in observing E2’s

The bands are identified thanks to the E1 transitions to the GSBs
More Negative-Parity Bands with No Q_2-Moments

Despite numerous tries nobody has ever succeed in observing $E2$'s

The bands are identified thanks to the $E1$ transitions to the GSBs

Jerzy DUDEK, University of Strasbourg, France
Evidence for Vanishing E2 Transitions in Actinides

The E2 transitions not seen in \(^{230-234}\text{U}\), while seen in \(^{236}\text{U}\); the experimental conditions (\(\gamma\) and \(ec\)) are the same or comparable.
Observe the ‘tetrahedral’ band patterns (vanishing E2-transitions) in $^{230-232}\text{U}$ in both the negative and positive parities!

Jerzy DUDEK, University of Strasbourg, France
Symmetries and Nuclear Stability: Examples of Projects
According to a simplified way of thinking, when all deformations tend to zero ($\alpha, \lambda, \mu \rightarrow 0$) then $Q_2 \rightarrow 0$ and $Q_1 \rightarrow 0$ and we are confronted with an ill-defined mathematical problem

$$\lim_{\alpha \rightarrow 0} \frac{B(E2)}{B(E1)} = ??? \quad (\text{undefined symbol } 0/0) !!!$$

However, because of the residual polarisations in terms of quadrupole deformation and of induced dipole moments at the band-heads we have

$$\lim_{\alpha \rightarrow 0} \frac{B(E2)}{B(E1)} = \frac{B_{\text{res}}(E2)}{B_{\text{res}}(E1)} \equiv B_0 \neq 0$$
According to a simplified way of thinking, when all deformations tend to zero \((\alpha, \lambda, \mu \to 0)\) then \(Q_2 \to 0\) and \(Q_1 \to 0\) and we are confronted with an ill-defined mathematical problem

\[
\lim_{\alpha \to 0} \frac{B(E2)}{B(E1)} = ??? \quad (undefined\ symbol \ \frac{0}{0}) !!!
\]

However, because of the residual polarisations in terms of quadrupole deformation and of induced dipole moments at the band-heads we have

\[
\lim_{\alpha \to 0} \frac{B(E2)}{B(E1)} = \frac{B_{res}(E2)}{B_{res}(E1)} \equiv B_0 \neq 0
\]
We Have the Smoking-Gun Signatures Almost There ...

In other words, we expect a spin dependence: \(\frac{B(E2)}{B(E1)} \sim B_0 + B_1 \cdot I \)

Conclusion: Tetrahedral symmetry must always be accompanied by static or dynamic quadrupole deformations at \(\alpha_{20} \neq 0 \) and \(\alpha_{22} \neq 0 \)
We Have the Smoking-Gun Signatures Almost There ...

In other words, we expect a spin dependence:

$$\frac{B(E2)}{B(E1)} \sim B_0 + B_1 \cdot I$$

Conclusion: Tetrahedral symmetry must always be accompanied by static or dynamic quadrupole deformations at $\alpha_{20} \neq 0$ and $\alpha_{22} \neq 0$
Table: Experimental ratios \(B(E2)_{in}/B(E1)_{out} \times 10^6 \)

<table>
<thead>
<tr>
<th>Spin</th>
<th>(^{152})Gd</th>
<th>(^{156})Gd</th>
<th>(^{154})Dy</th>
<th>(^{160})Er</th>
<th>(^{164})Er</th>
<th>(^{162})Yb</th>
<th>(^{164})Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>19(^-)</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17(^-)</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15(^-)</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>60</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13(^-)</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>18</td>
<td>23</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>11(^-)</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>9(^-)</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>7(^-)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Above: Branching ratios related to the negative parity bands are interpreted as tetrahedral, interband transitions to g.s.band
Possible El-Magnetic Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{\text{in}}/B(E1)_{\text{out}} \times 10^6$

<table>
<thead>
<tr>
<th>Spin</th>
<th>^{152}Gd</th>
<th>^{156}Gd</th>
<th>^{154}Dy</th>
<th>^{160}Er</th>
<th>^{164}Er</th>
<th>^{162}Yb</th>
<th>^{164}Yb</th>
</tr>
</thead>
<tbody>
<tr>
<td>19$^-$</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17$^-$</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>15$^-$</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>60</td>
<td>24</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13$^-$</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>18</td>
<td>23</td>
<td>-</td>
<td>17</td>
</tr>
<tr>
<td>11$^-$</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>9$^-$</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>7$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Above: Branching ratios related to the negative parity bands are interpreted as tetrahedral, interband transitions to g.s.band
Possible El-Magnetic Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

<table>
<thead>
<tr>
<th>Spin</th>
<th>152Gd</th>
<th>156Gd</th>
<th>154Dy</th>
<th>160Er</th>
<th>164Er</th>
<th>162Yb</th>
<th>164Yb</th>
<th>222Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>19$^-$</td>
<td>-</td>
<td>50</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+0.3</td>
</tr>
<tr>
<td>17$^-$</td>
<td>-</td>
<td>16</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+0.4</td>
</tr>
<tr>
<td>15$^-$</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>60</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>+0.4</td>
</tr>
<tr>
<td>13$^-$</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>18</td>
<td>23</td>
<td>-</td>
<td>17</td>
<td>+0.3</td>
</tr>
<tr>
<td>11$^-$</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>+0.4</td>
</tr>
<tr>
<td>9$^-$</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>11</td>
<td>10</td>
<td>+0.4</td>
</tr>
<tr>
<td>7$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>+0.4</td>
</tr>
</tbody>
</table>

Conclusion: Tetrahedral bands in Rare Earth nuclei behave very differently as compared e.g. to 'classical' octupole 222Th band!
Possible El-Magnetic Signs of Tetrahedral Symmetry

Table: Experimental ratios $B(E2)_{in}/B(E1)_{out} \times 10^6$

<table>
<thead>
<tr>
<th>Spin</th>
<th>152Gd</th>
<th>156Gd</th>
<th>154Dy</th>
<th>160Er</th>
<th>164Er</th>
<th>162Yb</th>
<th>164Yb</th>
<th>222Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>19$^-$</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0.3</td>
</tr>
<tr>
<td>17$^-$</td>
<td>0</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0.4</td>
</tr>
<tr>
<td>15$^-$</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>60</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>+0.4</td>
</tr>
<tr>
<td>13$^-$</td>
<td>14</td>
<td>7</td>
<td>15</td>
<td>18</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>+0.3</td>
</tr>
<tr>
<td>11$^-$</td>
<td>4</td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>+0.4</td>
</tr>
<tr>
<td>9$^-$</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>10</td>
<td>+0.4</td>
</tr>
<tr>
<td>7$^-$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+0.4</td>
</tr>
</tbody>
</table>

Conclusion: Tetrahedral bands in Rare Earth nuclei behave very differently as compared e.g. to 'classical' octupole 222Th band!

Jerzy DUDEK, University of Strasbourg, France
Example: This Is Not Our Effect [Pear-Shape]

Deformation\(\alpha_{20}\)

\[
E(fyu) + \text{Shell[e]} + \text{Correlation}[PNP]
\]

\[
\begin{array}{c}
E\text{[MeV]} \\
\end{array}
\]

\[
\begin{array}{c}
\text{Emin} = -7.58, \text{Eo} = -3.07
\end{array}
\]

\[
\begin{array}{c}
222\text{Th}_{132}
\end{array}
\]

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
 THEORY PREDICTIONS AND EXPERIMENTAL VERIFICATION

EXAMPLE: THIS IS NOT OUR EFFECT [PEAR-SHAPED]

\[
E(fyu) + \text{Shell} + \text{Correlation}[\text{PNP}]
\]

\[
\frac{B(E2)_{\text{in}}}{B(E1)_{\text{out}}} \times 10^6 \text{ eFm}
\]

\begin{array}{|c|c|}
\hline
\text{Spin} & \text{222Th} \\
\hline
19^- & +0.3 \\
17^- & +0.4 \\
15^- & +0.4 \\
13^- & +0.3 \\
11^- & +0.4 \\
09^- & +0.4 \\
07^- & +0.4 \\
\hline
\end{array}

\text{Experiments and TetraNuc Collaboration}

\text{Symmetries and Nuclear Stability: Examples of Projects}

\text{Jerzy DUDEK, University of Strasbourg, France}
Tetrahedral-Symmetry Candidates in the Actinides

Experiment: Three types of situations correspond to three colours:
- **[red]**-tetrahedral,
- **[yellow]**-octupole,
- **[green]**-both.

<table>
<thead>
<tr>
<th></th>
<th>N →</th>
<th>130</th>
<th>132</th>
<th>134</th>
<th>136</th>
<th>138</th>
<th>140</th>
<th>142</th>
<th>144</th>
<th>146</th>
<th>148</th>
<th>150</th>
<th>152</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>244</td>
<td>246?</td>
<td>248</td>
</tr>
<tr>
<td></td>
<td>Pu</td>
<td></td>
<td></td>
<td>236</td>
<td>238</td>
<td>240</td>
<td>242?</td>
<td>244</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U</td>
<td></td>
<td></td>
<td>230</td>
<td>232</td>
<td>234</td>
<td>236</td>
<td>238</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Th</td>
<td>220</td>
<td>222</td>
<td>224</td>
<td>226</td>
<td>228</td>
<td>230</td>
<td>232</td>
<td>234</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ra</td>
<td>218</td>
<td>220</td>
<td>222</td>
<td>224</td>
<td>226</td>
<td>228</td>
<td>230</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rn</td>
<td>216</td>
<td>218</td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nearly half of the experimental data on the Actinidae nuclei do not manifest the E2-transitions in the negative-parity bands!
Table: Experimental ratios $B(E2)/B(E1) \times 10^6 [fm^2]$, for intra-band $E2$ transitions vs. inter-band $E1$ transitions. Meaning of symbols: “−” - state has not been observed; “?” - intensities to calculate the branching ratios not available; “(?)” - known information insufficient to obtain error bars.

<table>
<thead>
<tr>
<th>State</th>
<th>220Th</th>
<th>222Th</th>
<th>224Th</th>
<th>226Th</th>
<th>228Th</th>
<th>152Gd</th>
<th>156Gd</th>
</tr>
</thead>
<tbody>
<tr>
<td>21−</td>
<td>no E1</td>
<td>0.2(?)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19−</td>
<td>no E1</td>
<td>0.3(?)</td>
<td>-</td>
<td>-</td>
<td>2.0(5)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17−</td>
<td>no E1</td>
<td>0.4(2)</td>
<td>0.3(1)</td>
<td>2.3(4)</td>
<td>2.0(4)</td>
<td>no E1</td>
<td>-</td>
</tr>
<tr>
<td>15−</td>
<td>0.9(2)</td>
<td>0.4(2)</td>
<td>0.4(1)</td>
<td>?</td>
<td>?</td>
<td>no E1</td>
<td>16(3)</td>
</tr>
<tr>
<td>13−</td>
<td>0.2(1)</td>
<td>0.3(2)</td>
<td>0.5(1)</td>
<td>2.0(2)</td>
<td>?</td>
<td>no E1</td>
<td>14(?)</td>
</tr>
<tr>
<td>11−</td>
<td>0.5(1)</td>
<td>0.4(2)</td>
<td>0.4(1)</td>
<td>2.0(2)</td>
<td>?</td>
<td>no E2</td>
<td>4(?)</td>
</tr>
<tr>
<td>9−</td>
<td>0.4(1)</td>
<td>0.4(2)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>no E2</td>
<td>no E2</td>
</tr>
<tr>
<td>7−</td>
<td>0.4(1)</td>
<td>0.4(3)</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>no E2</td>
<td>no E2</td>
</tr>
</tbody>
</table>
Figure: *RIKEN Superconducting Ring Cyclotron (SRC)*
Figure: *RIKEN Ring Cyclotron*
Figure: *BigRIPS-II* a medium-acceptance separator.
Figure: *Gammasphere is the world’s most powerful gamma-spectrometer (surrounded by the very friendly, warm, stimulating, American atmosphere)*
Figure: Gammasphere ‘opened’ showing the area where the beam hits the target; This detector has worked and will be working for us to possibly discover the tetrahedral symmetry in subatomic physics

Jerzy DUDEK, University of Strasbourg, France

Symmetries and Nuclear Stability: Examples of Projects
We Have Launched the Collaboration 'TetraNuc'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the consequences of tetrahedral symmetry in subatomic physics and astrophysics

LABORATORIES TODAY: IPHC Strasbourg, Ganil, ILL-Grenoble, IPN-Lyon, IPN-Orsay, CSNSM-Orsay, CEA-Saclay, IFJ PAN Cracow, GSI-Darmstadt, U of Jyvaslyla, LN Legnaro, U of Lublin, U of Mainz, ORNL and Knoxville, U of Surrey and U of Warsaw

Participants: 80 permanent and Ph-D including 5 theorists
We Have Launched the Collaboration 'TetraNuc'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the consequences of tetrahedral symmetry in subatomic physics and astrophysics

LABORATORIES TODAY: IPHC Strasbourg, Ganil, ILL-Grenoble, IPN-Lyon, IPN-Orsay, CSNSM-Orsay, CEA-Saclay, IFJ PAN Cracow, GSI-Darmstadt, U of Jyvaslyla, LN Legnaro, U of Lublin, U of Mainz, ORNL and Knoxville, U of Surrey and U of Warsaw

Participants: 80 permanent and Ph-D including 5 theorists
We Have Launched the Collaboration 'TetraNuc'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the consequences of tetrahedral symmetry in subatomic physics and astrophysics

LABORATORIES TODAY: IPHC Strasbourg, Ganil, ILL-Grenoble, IPN-Lyon, IPN-Orsay, CSNSM-Orsay, CEA-Saclay, IFJ PAN Cracow, GSI-Darmstadt, U of Jyvaslyla, LN Legnaro, U of Lublin, U of Mainz, ORNL and Knoxville, U of Surrey and U of Warsaw

Participants: 80 permanent and Ph-D including 5 theorists
We Have Launched the Collaboration 'TetraNuc'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the consequences of tetrahedral symmetry in subatomic physics and astrophysics

LABORATORIES TODAY: IPHC Strasbourg, Ganil, ILL-Grenoble, IPN-Lyon, IPN-Orsay, CSNSM-Orsay, CEA-Saclay, IFJ PAN Cracow, GSI-Darmstadt, U of Jyvaslyla, LN Legnaro, U of Lublin, U of Mainz, ORNL and Knoxville, U of Surrey and U of Warsaw

Participants: 80 permanent and Ph-D including 5 theorists
We Have Launched the Collaboration 'TetraNuc'

A few points about the TETRANUC collaboration:

Goal: Demonstrate the existence and study the consequences of tetrahedral symmetry in subatomic physics and astrophysics

LABORATORIES TODAY: IPHC Strasbourg, Ganil, ILL-Grenoble, IPN-Lyon, IPN-Orsay, CSNSM-Orsay, CEA-Saclay, IFJ PAN Cracow, GSI-Darmstad, U of Jyvaslyla, LN Legnaro, U of Lublin, U of Mainz, ORNL and Knoxville, U of Surrey and U of Warsaw

Participants: 80 permanent and Ph-D including 5 theorists
Most Urgent: Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics and/or astrophysics.

First proposals: To study the suspect tetrahedral band in 156Gd. Using known transition energies aim at as precise as possible $B(E2)/B(E1)$ ratios, also Q_2.

Jerzy DUDEK, University of Strasbourg, France
Most Urgent: Proposals to Study Branching Ratios

A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics and/or astrophysics.

First proposals: To study the suspect tetrahedral band in 156Gd. Using known transition energies aim at as precise as possible $B(E2)/B(E1)$ ratios, also Q_2.
A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics and/or astrophysics.

First proposals: To study the suspect tetrahedral band in 156Gd. Using known transition energies aim at as precise as possible $B(E2)/B(E1)$ ratios, also Q_2.
A few points about the TETRANUC collaboration:

The LOGO (!) of the new collaboration suggests our principal interest:

Find for the first time the experimental evidence of the tetrahedral symmetry in subatomic physics and/or astrophysics.

First proposals: To study the suspect tetrahedral band in 156Gd. Using known transition energies aim at as precise as possible $B(E2)/B(E1)$ ratios, also Q_2.
Part V
Summary and Conclusions
The Strongest Tetrahedral Islands Predicted by Theory

In the Actinide region, most of the so-called octupole bands have never seen their E2 transitions in experiment [detailed discussion].
The Strongest Tetrahedral Islands Predicted by Theory

In the Rare Earth Region
the Sm, Gd and Dy nuclei \([Z=62,64,66]\)
manifest negative parity bands
without E2 transitions [see details]
The Strongest Tetrahedral Islands Predicted by Theory

In the Zirconium region, several nuclei manifest the largest ever octupole transitions \([B(E3) \sim (20–60)\text{W.u.}]\).
Summary

• We presented what we call the *New Theory of Nuclear Stability* based on the nuclear mean-field concepts and group theory.

• On its basis we suggest that the nuclear stability is underlined by spatial symmetries with high number of irreducible representations.

• ... rather than multipole expansion, prolate/oblate shape coexistence etc. - although the latter are a particular case of the former.

• We have illustrated the new theory of stability with two high-rank point-groups: *octahedral* - and its *tetrahedral* sub-group.
Summary

• We presented what we call the *New Theory of Nuclear Stability* based on the nuclear mean-field concepts and group theory.

• On its basis we suggest that the nuclear stability is underlined by spatial symmetries with high number of irreducible representations.

• ... rather than multipole expansion, prolate/oblate shape coexistence etc. - although the latter are a particular case of the former.

• We have illustrated the new theory of stability with two high-rank point-groups: *octahedral* - and its *tetrahedral* sub-group.
Conclusions

• We have demonstrated through realistic calculations that several point-groups so far never considered in nuclear structure physics lead to very strong shell effects

• In particular: tetrahedral symmetry minima imply the presence of negative parity bands with vanishing E2 transitions

• We have found the presence of those bands in the existing literature in full agreement with our general predictions

• It is suggested that the 'octupole effects', considered so far in the literature, separate into two categories: the ‘traditional’ ('pears') and ‘tetrahedral’ ('pyramids')
Conclusions

- We have demonstrated through realistic calculations that several point-groups so far never considered in nuclear structure physics lead to very strong shell effects.

- In particular: tetrahedral symmetry minima imply the presence of negative parity bands with vanishing E2 transitions.

- We have found the presence of those bands in the existing literature in full agreement with our general predictions.

- It is suggested that the 'octupole effects', considered so far in the literature, separate into two categories: the 'traditional' ('pears') and 'tetrahedral' ('pyramids').
Perspectives

• We are going to study the relatively low spin states, \(I \leq 20 \hbar \) at relatively high excitations - in Rare Earth and Actinide Nuclei.

• Of high priority are the life-time measurements of the absolute values of quadrupole and dipole moments of the tetrahedral bands.

• We have performed recently three experiments along these lines \([^{156}\text{Gd in Legnaro and Jyväskylä}, ^{156}\text{Dy at Argonne Nat. Laboratory}]\)

• We are extending the new symmetry ideas to the super-heavy nuclei \([\text{extensive calculations for nuclei around } Z\sim118 \text{ and } N\sim178]\);
Perspectives

• We are going to study the relatively low spin states, \(I \leq 20 \hbar \) at relatively high excitations - in Rare Earth and Actinide Nuclei

• Of high priority are the life-time measurements of the absolute values of quadrupole and dipole moments of the tetrahedral bands;

• We have performed recently three experiments along these lines \([^{156}\text{Gd in Legnaro and Jyväskylä, }^{156}\text{Dy at Argonne Nat. Laboratory}]\)

• We are extending the new symmetry ideas to the super-heavy nuclei \([\text{extensive calculations for nuclei around } Z \sim 118 \text{ and } N \sim 178]\);
Perspectives

• We are going to study the relatively low spin states, \((I \leq 20 \hbar)\) at relatively high excitations - in Rare Earth and Actinide Nuclei

• Of high priority are the life-time measurements of the absolute values of quadrupole and dipole moments of the tetrahedral bands;

• We have performed recently three experiments along these lines \([^{156}\text{Gd} \text{ in Legnaro and Jyväskylä}, ^{156}\text{Dy} \text{ at Argonne Nat. Laboratory}]\)

• We are extending the new symmetry ideas to the super-heavy nuclei \([\text{extensive calculations for nuclei around } Z\sim118 \text{ and } N\sim178] ;\)
Thanks to: TetraNuc Collaboration [1]

I wish to thank for the support and participation in experiments as well as help in theoretical development the following Colleagues:

A. Góźdź, A. Dobrowolski - University of Lublin, Poland

N. Dubray - CEA, Bruyères-le-Châtel, F

N. Alahari, G. de France, M. Rejmund - GANIL, Caen, F

B. Lauss - ILL, Grenoble, F

N. Redon, Ch. Schmitt, O. Stézowski, D. Q. Tuyen - IPN, Lyon, F

A. Astier, G. Georgiev - CSNSM, Orsay, F

Thanks to: TetraNuc Collaboration [1]

I wish to thank for the support and participation in experiments as well as help in theoretical development the following Colleagues:

F. Haas, F. Khalfallah, D. Lebhertz, H. Molique, J. Robin, M. Rousseau, K. Rybak, M-D. Salsac - IPHC, Strasbourg, F

A. Góźdź, A. Dobrowolski - University of Lublin, Poland

N. Dubray - CEA, Bruyères-le-Châtel, F

N. Alahari, G. de France, M. Rejmund - GANIL, Caen, F

B. Lauss - ILL, Grenoble, F

N. Redon, Ch. Schmitt, O. Stézowski, D. Q. Tuyen - IPN, Lyon, F

A. Astier, G. Georgiev - CSNSM, Orsay, F

Thanks to: TetraNuc Collaboration [2]

I wish to thank for the support and participation in experiments as well as help in theoretical development the following Colleagues:

D. Tonev - Bulgarian Academy of Sciences, Sofia, Bulgaria

J. Gerl - GSI, Darmstadt, Ge

R.P. Singh, S. Muralithar, R. Kumar, A. Jhingan, J.J. Das, R. K. Bhowmik - Inter-University Accelerator Centre, New Delhi 67, India

G. de Angelis, A. Gadea, D.R. Napoli, J.J. Valiente-Dobon, F. Della Vedova, R. Orlandi, E. Sahin - INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

D. Mengoni, F. Recchia, S. Aydin, R. Menegazzo, D. Bazzacco, E. Farnea, S. Lunardi, C. Ur - Dipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy

Y. R. Shimizu - Kyushu University, Fukuoka, JP

P. Bednarczyk, B. Fornal, A. Maj, K. Mazurek - IFJ PAN, Krakow, Poland

J. Dobaczewski - University of Warsaw, PL and JYFL, Jyväskylä, Fi

R.A. Bark, T.E. Madiba, T.D. Singo - iThemba LABS Physics Group;
D.G. Roux, J.F. Sharpey-Schafer, UWC, SA

P. Regan - University of Surrey, UK
Thanks to: TetraNuc Collaboration [2]

I wish to thank for the support and participation in experiments as well as help in theoretical development the following Colleagues:

D. Tonev - Bulgarian Academy of Sciences, Sofia, Bulgaria
J. Gerl - GSI, Darmstadt, Ge
R.P. Singh, S. Muralithar, R. Kumar, A. Jhingan, J.J. Das, R. K. Bhowmik - Inter-University Accelerator Centre, New Delhi 67, India
G. de Angelis, A. Gadea, D.R. Napoli, J.J. Valiente-Dobon, F. Della Vedova, R. Orlandi, E. Sahin - INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy
D. Mengoni, F. Recchia, S. Aydin, R. Menegazzo, D. Bazzacco, E. Farnea, S. Lunardi, C. Ur - Dipartimento di Fisica and INFN, Sezione di Padova, Padova, Italy
Y. R. Shimizu - Kyushu University, Fukuoka, JP
P. Bednarczyk, B. Fornal, A. Maj, K. Mazurek - IFJ PAN, Krakow, Poland
J. Dobaczewski - University of Warsaw, PL and JYFL, Jyväskylä, Fi
R.A. Bark, T.E. Madiba, T.D. Singo - iThemba LABS Physics Group;
D.G. Roux, J.F. Sharpey-Schafer, UWC, SA
P. Regan - University of Surrey, UK
Thanks to All:

Last but not least many thanks to an extremely dynamic contributions from our colleagues from the USA

L.L. Riedinger, Department of Physics, University of Tennessee, Knoxville, TN 37996
D.J. Hartley, Department of Physics, US Naval Academy, Annapolis, MD 21402
N. Schunck - University of Tennessee, USA
C. Beausang - Department of Physics, University of Richmond, Richmond, VA 23173
M.P. Carpenter, T. Lauritsen, E.A. McCutchan - Physics Division, Argonne National Laboratory, Argonne, IL 60439
C.J. Chiara, F.G. Kondev - Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439
P.E. Garrett - Department of Physics, University of Guelph, Guelph, Ontario, Canada
W.D. Kulp - School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
M.A. Riley - Department of Physics, Florida State University, Tallahassee, FL 32306L

Jerzy DUDEK, University of Strasbourg, France
Symmetries and Nuclear Stability: Examples of Projects
Thanks to All:

Last but not least many thanks to an extremely dynamic contributions from our colleagues from the USA

L.L. Riedinger, Department of Physics, University of Tennessee, Knoxville, TN 37996
D.J. Hartley, Department of Physics, US Naval Academy, Annapolis, MD 21402
N. Schunck - University of Tennessee, USA
C. Beausang - Department of Physics, University of Richmond, Richmond, VA 23173
M.P. Carpenter, T. Lauritsen, E.A. McCutchan - Physics Division, Argonne National Laboratory, Argonne, IL 60439
C.J. Chiara, F.G. Kondev - Nuclear Engineering Division, Argonne National Laboratory, Argonne, IL 60439
P.E. Garrett - Department of Physics, University of Guelph, Guelph, Ontario, Canada
W.D. Kulp - School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
M.A. Riley - Department of Physics, Florida State University, Tallahassee, FL 32306L
The story of high-rank symmetries started some 14 years ago
and was revived some 10 years later with a series of new articles

We had a workshop about these issues in 2006 at Trento, Italy

We had another workshop in 2007 at the ILL, Grenoble, France

There has been a recent workshop on tetrahedral symmetry, at Atlanta, GA, USA, in 2008
The story of high-rank symmetries started some 14 years ago
and was revived some 10 years later with a series of new articles

We had a workshop about these issues in 2006 at Trento, Italy

We had another workshop in 2007 at the ILL, Grenoble, France

There has been a recent workshop on tetrahedral symmetry, at Atlanta, GA, USA, in 2008
The story of high-rank symmetries started some 14 years ago
and was revived some 10 years later with a series of new articles

We had a workshop about these issues in 2006 at Trento, Italy

We had another workshop in 2007 at the ILL, Grenoble, France

There has been a recent workshop on tetrahedral symmetry, at Atlanta, GA, USA, in 2008
The story of high-rank symmetries started some 14 years ago
and was revived some 10 years later with a series of new articles
We had a workshop about these issues in 2006 at Trento, Italy
We had another workshop in 2007 at the ILL, Grenoble, France
There has been a recent workshop on tetrahedral symmetry,
at Atlanta, GA, USA, in 2008
There is a suggestion to hold a TetraNuc workshop in Europe soon

Italian colleagues suggest to have it in Italy, possibly in April

New mini-conference will be organized in the USA

There is a mini-conference considered in the near future at RIKEN, Japan
There is a suggestion to hold a TetraNuc workshop in Europe soon.

Italian colleagues suggest to have it in Italy, possibly in April.

New mini-conference will be organized in the USA.

There is a mini-conference considered in the near future at RIKEN, Japan.
There is a suggestion to hold a TetraNuc workshop in Europe soon
Italian colleagues suggest to have it in Italy, possibly in April
New mini-conference will be organized in the USA
There is a mini-conference considered in the near future at RIKEN, Japan