Renormalization group

Three phases: Removal of UV divergences (local, coupling-by-coupling)
Critical phenomena (local, coupling-by-coupling)
Algorithm to solve strongly coupled systems (global, functional)

1. Nonperturbative method (beyond resummation)
2. Anderson localisation
3. Global RG
4. Condensation
5. Real time dynamics, quantum-classical crossover
Nonperturbative method

Q: How to calculate integrals nonperturbatively?
A: No explicit calculation, evolution only.

Functional differential equation:

\[I_g(k) = \int dx e^{iS_g(x) + ikx} \]

\[\partial_g I_g(k) = \int dx e^{iS_g(x) + ikx} \partial_g S_g(x) \]

\[= \partial_g S_g \left(-i \frac{\partial}{\partial k} \right) I_g(k) \]

Solved by numerical integration in \(g \):

\[I_g(k) = I_{g_0}(k) + \int_{g_0}^g dg' \partial_{g'} S_{g'} \left(-i \frac{\partial}{\partial k} \right) I_{g'}(k) \]

New small parameter: \(\frac{\delta g}{g}, \quad g = \Lambda, m, \hbar, e, \ldots \)
Realization: $I_{g}(x) \rightarrow$ effective action

\[e^{iW_{g}[j]} = \int D[\phi] e^{iS[\phi]+\frac{1}{2} \int dx dy \phi(x) K_{g}(x-y) \phi(y)} + i \int dx j(x) \phi(x) \]

\[\Gamma[\phi] = W[j] - \int dx j(x) \phi(x), \quad \phi(x) = \frac{\delta W[j]}{\delta j(x)} \]

\[\Gamma[\phi] = \sum_{n=1}^{\infty} \frac{1}{n!} \int dx_{1} \cdots dx_{n} \Gamma^{(n)}(x_{1}, \ldots, x_{n}) \phi(x_{1}) \cdots \phi(x_{n}) \]

Evolution (RG) equation: Initial condition $\Gamma_{g_{0}}[\phi] = S[\phi]$

\[\partial_{g} W_{g}[j] = -e^{-iW_{g}[j]} \int dx dy \frac{\delta}{\delta j(x)} \partial_{g} K_{g}(x-y) \frac{\delta}{\delta j(y)} e^{iW_{g}[j]} \]

\[\partial_{g} \Gamma_{g}[\phi] = \frac{1}{2} \text{Tr} \left[\partial_{g} K \frac{1}{\delta \phi \delta \phi} + K_{g} \right] + \frac{1}{2} \int dx dy \phi(x) \partial_{g} K_{g}(x-y) \phi(y) \]

Conventional RG: few coupling constants, ∞ orders in pert. exp.

Functional, differential RG: ∞ many coupling constants, first order in pert. exp.

better truncation schemes
Anderson localisation
(Free electrons, 3D on $160^3 - 320^3$ lattices, $\hbar = a = m = 1$)

Inverse conductivity
strength of disorder
$0.017 < \rho < 0.5$

Inverse conductivity
frequency
$\rho = 0.11$,
$g = 10, 10^2, 10^3, 10^4, 10^5$

$\sqrt{\frac{g \rho x}{E_{\text{band}}}}$
density
$\omega = 0.00512$
and
$\omega = 0.00002$

Inclusion of (strong) Coulomb interaction is possible
High energy physics - Critical phenomena connection

Asymptotic scaling laws around a fixed point: relevant (↗) and irrelevant (↘) operators

Critical phenomena: $a ↗$
High energy physics $a = \frac{2\pi}{\Lambda} ↘$

<table>
<thead>
<tr>
<th>Statistical Physics</th>
<th>Quantum Field Theory ($\hbar = c = 1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>lattice spacing, minimal distance: a</td>
<td>cutoff: $\Lambda = \frac{2\pi}{a}$</td>
</tr>
<tr>
<td>correlation length: ξ</td>
<td>Compton wavelength: $\frac{1}{m}$</td>
</tr>
<tr>
<td>critical phenomenon: a is fixed, $\frac{\xi}{a} \rightarrow \infty$</td>
<td>renormalization: m is fixed, $\frac{\Lambda}{m} = \frac{2\pi}{\xi} = 2\pi \frac{\xi}{a} \rightarrow \infty$</td>
</tr>
<tr>
<td>UV fixed point</td>
<td>renormalized theory</td>
</tr>
<tr>
<td>relevant or marginal operator</td>
<td>renormalizable operator</td>
</tr>
<tr>
<td>irrelevant operator</td>
<td>non-renormalizable operator</td>
</tr>
<tr>
<td>universality</td>
<td>renormalizable theories cover all possible dynamics</td>
</tr>
</tbody>
</table>
Global RG
(J. Alexandre, V. Branchina, J. Polonyi)

Solids:
UV scaling law: γ, e, p
IR scaling law: $\gamma, e_{\text{cond}}, $ phonons

Four possibility for global assignment:

g

q_e

$(\bar{\psi}\psi)^2$

q_{μ}

$(\bar{\psi}\psi)^3$
Global RG for the Theory Of Everything

Passing by fixed points
Islands of local universality
Bifurcations: Phase transitions
Chaotic trajectory?
Fundamental vs. applied physics
RG microscope
J. Alexandre, V. Branchina, S. Nagy, I. Nandori, J. Polonyi, K. Sailer

B-E condensate (eg. supercurrent density in a solid as a function of the parameters beyond the Standard Model)

Quark confinement Haar measure of the gauge group

Massive sine-Gordon model: k gliding cut-off

$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi + u \cos(\beta \phi) + \frac{M^2}{2} \phi^2$$

Sensitivity: $\frac{\partial u(k)}{\partial u(\Lambda)}$
Microscope effect in the molecular phase

$\beta^2 < 8\pi$
Condensation
V. Pangon, S. Nagy, J. Polonyi, K. Sailer

Wegner-Houghton equation: lowering the cutoff \(k \to k - \Delta k \)

\[
e^{-\frac{i}{\hbar}S_{k-\Delta k}[\phi]} = \int D[\tilde{\phi}] e^{-\frac{i}{\hbar}S_k[\phi+\tilde{\phi}]}
\]

\[
S_k[\phi + \tilde{\phi}_c] - S_{k-\Delta k}[\phi] = -\frac{\hbar}{2} \text{Tr} \ln \frac{\delta^2 S_k[\phi + \tilde{\phi}_c]}{\delta \phi \delta \phi} + \mathcal{O}(\hbar^2)
\]

Ansatz: \(S_k[\phi] = \int d^4x \left[\frac{1}{2} (\partial \phi)^2 + V_k(\phi) \right] \), \(\tilde{\phi}_c = 0 \)

\[
\partial_k V_k(\phi) = -\frac{\hbar k^3}{16\pi^2} \ln[k^2 + \partial_c^2 V_k(\phi)]
\]
\[\partial_k V_k(\phi) = -\frac{\hbar k^3}{16\pi^2} \ln[k^2 + \partial^2_\phi V_k(\phi)] \]

force the restoration of equilibrium
Condensation \leftrightarrow SSB $\leftrightarrow \partial^2_\phi V(0) < 0$

\[k^2 + \partial^2_\phi V_k(\phi) = 0: \text{no analytical approaches} \]
\[k^2 + \partial^2_\phi V_k(\phi) < 0: \hat{\phi}_c \neq 0 \]
saddle point exp.

dynamical Maxwell-cut (deg. action)
(Branchina, Alexandre, Polonyi)
Approach of degeneracy

\[V_B(\phi) = g \cos \beta \phi \]

\[V_B(\phi) = \frac{1}{2} m_B^2 \phi^2 + \frac{1}{4} g_B \phi^4 \]

Quantum censorship?
Real time dynamics (CTP, J. Schwinger)

Variational formalism with initial conditions and friction forces

No variation at the end points

whatever order of the differential eq.

because \(\delta S[x] = p \neq 0 \)

CTP: Still \(\delta(x_{t_f}) = 0 \) \((t_f \text{ arbitrary}) \)

but \(x(t) = \begin{cases} x^+(t) & 0 < t < t_f \\ x^-(t_f - t) & t_f < t < 2t_f \end{cases} \)

- Reduplication of the degrees of freedom \(\implies \) friction and retarded interactions

- Quantum case: Heisenberg representation, \(A(t) = e^{itH}A_se^{-itH} \)

Expectation values rather than transition amplitudes
Quantum-classical crossover

Density matrix:

\[\langle x^{(+)}|\rho(t)|x^{(-)}\rangle = \langle x^{(+)}|e^{-i t H} \rho_0 e^{i t H} |x^{(-)}\rangle = \int D[x^\pm(t)] e^{i \frac{\hbar}{2} (S[x^+]-S[x^-])} \]

Decoherence: a necessary condition for classical physics

\[\langle x+y|\rho(t)|x-y\rangle \text{ decreases for when } y \text{ increased} \]

Contribution with \(x^+(t) \not= x^-(t) \) suppressed in the path integral

Strong coupling regime: \(\langle x^{(+)}|\rho(t)|x^{(-)}\rangle \approx \int D[x] e^{i \frac{\hbar}{2} (S[x]-S[x])} = \int D[x] \)

Feynman’s scenario with rigid trajectories is invalid

Need of nonperturbative scheme \(\Rightarrow \) Quantum RG